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Abstract— We study how autonomous robots can learn by
themselves to improve their depth estimation capability. In
particular, we investigate a self-supervised learning setup in
which stereo vision depth estimates serve as targets for a
convolutional neural network (CNN) that transforms a single
still image to a dense depth map. After training, the stereo
and mono estimates are fused with a novel fusion method that
preserves high confidence stereo estimates, while leveraging
the CNN estimates in the low-confidence regions. The main
contribution of the article is that it is shown that the fused
estimates lead to a higher performance than the stereo vision
estimates alone. Experiments are performed on the KITTI
dataset, and on board of a Parrot SLAMDunk, showing that
even rather limited CNNs can help provide stereo vision
equipped robots with more reliable depth maps for autonomous
navigation.

Index Terms— Self-supervised learning, monocular depth
estimation, stereo vision, convolutional neural networks

I. INTRODUCTION

Accurate 3D information of the environment is essential
to several tasks in the field of robotics such as navigation
and mapping. Current state-of-the-art technologies for robust
depth estimation rely on powerful active sensors like Light
Detection And Ranging (LIDAR). Despite the fact that
smaller scale solutions as the Microsoft Kinect [[12] exist,
they are still too heavy when the available payload and power
consumption are limited, such as on-board of Micro Air
Vehicles (MAVs). RGB cameras provide a good alternative,
as they can be light, small, and consume little power.

The traditional setup for depth estimation from images
consists of a stereo system. Stereo vision has been vastly
studied and is considered a reliable method. For instance,
NASA’s rover Curiosity was equipped with stereo vision
[11] to help detecting potential obstacles in the desired tra-
jectory. However, stereo vision exhibits limited performance
in regions with low-texture or with repetitive patterns and
when objects appear differently to both views or are partly
occluded. Moreover, the resolution of the cameras and the
distance between them - baseline - also affect the effective
range of accurate depth estimation.

Monocular depth estimation is also possible. Multi-view
monocular [6] methods work in a way similar to stereo
vision: single images are captured at different time steps and
structures are matched across views. However, opposite to
stereo, the baseline is not known, which hampers the process
of absolute depth retrieval. This is a main challenge in this
area and typically relies on additional sensors.
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Fig. 1. We propose to merge depth estimates from stereo vision with
monocular depth estimates from a still image. The robot can learn to
estimate depths from still images by using stereo vision depths in a self-
supervised learning approach. We show that fusing dense stereo vision and
still mono depth gives better results than stereo alone.
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Depth estimation from single still images [5, |4, |16] -
”still-mono” - provides an alternative to multi-view methods
in general. In this case, depth estimation relies on the
appearance of the scene and the relationships between its
components by means of features, such as texture gradients
and color [24]]. The main advantage of still-mono compared
to stereo vision is that since only one view is considered, a
priori there are no limitations in performance imposed by the
way objects appear in the field of view or their disposition
in the scene. Thus, single mono estimators should not have
problems related with very close or very far objects nor
when these are partly occluded. As single still-mono depth
estimation is less amenable to mathematical analysis than
stereo vision, still-mono estimators often rely on learning
strategies to infer depths from images [16, [24] . Thus,
feature extraction for depth prediction is done by minimizing
the error on a training set. Consequently, there are no
warranties that the model will be able to generalize well
to the operational environment, especially if there is a big
gap between the operational and training environments.

A solution to this problem is to have the robot learn depth
estimation directly in its own environment. In [§] a very
elegant method was proposed, making use of the known
geometry of the two cameras. In essence, this method trains
a deep neural network to predict a disparity map that is then
used together with the provided geometrical transformations
to reconstruct (or predict) the right image. Follow-up studies
have obtained highly accurate depth estimation results in this
manner [30, [10].

In this article, we explore an alternative path to self-
supervised learning of depth estimation in which we assume



a robot to be equipped already with a functional stereo vision
algorithm. The disparities of this stereo vision algorithm
serve as supervised targets for training a deep neural network
to estimate disparities from a single still image. Specifically,
only sparse disparities in high-confidence image regions are
used for the training process. The main contribution of this
article is that we show that the fusion of the resulting
monocular and stereo vision depth estimates gives more
accurate results than the stereo vision disparities alone. Fig[l|
shows an overview of the proposed self-supervised learning
setup.

II. RELATED WORK

A. Depth estimation from single still images

Humans are able to perceive depths with one eye, even if
not moving. To this end, we make use of different monocular
cues such as occlusion, texture gradients and defocus [29}
24]. Various computer vision algorithms have been developed
over the years to mimic this capability.

The first approaches to monocular depth estimation used
vectors of hand-crafted features to statistically model the
scene. These vectors characterize small image patches pre-
serving local structures and include features such as texture
energy, texture gradients and haze computed at different
scales. Methods such as Markov Random Fields (MRF) have
been successfully used for regression [24], while for instance
Support Vector Machines (SVMs) have been used to classify
each pixel in discrete distance classes [1]].

In the context of monocular depth estimation, CNNs are
current state-of-the-art [22] 4} [20]]. The use of CNNs forgoes
the need of using hand-crafted features. However, large
amounts of data are required to ensure full convergence of
the solution such that the weight’s space is properly explored.

Despite the fact that different network architectures can
be successfully employed, a common approach consists of
stacking two or more networks that make depth predictions
at different resolutions. One of the networks makes a global,
coarse depth prediction that is consecutively refined by the
other heaped networks. These networks will explore local
context and incorporate finer-scale details in the global
prediction. Different information, such as depth gradients,
can also be incorporated [16]]. Eigen ef al. [5]] developed the
pioneer study considering CNNs for depth prediction. An
architecture consisting of two stacked networks making pre-
dictions at different resolutions was used. This architecture
was further improved [4f] by adding one more network for
refinement and by performing the tasks of depth estimation,
surface normal estimation and semantic labelling jointly.
Since this first implementation several other studies have
followed using different architectures [21]], posing depth
estimation as a classification problem [2f] or considering a
different loss function [18]. A common ground to these
‘earlier’ deep learning studies is that high quality dense depth
maps are used as ground truth during training time. These
maps are typically collected using different hardware, such
as LIDAR technology or Microsoft Kinect, and are manually

processed in order to remove noise or correct wrong depth
estimates.

More recent work has focused on obtaining training data
more easily and transferring the learned monocular depth
estimation more successfully to the real world. For example,
in [23] a Fully Convolutional Network (FCN) is trained
to estimate distances in various, visually highly realistic,
simulated environments, in which ground-truth distance val-
ues are readily available. As mentioned in the introduction,
recently, very successful methods have been introduced that
learn to estimate distances in a still image by minimizing
the reconstruction loss of the right image when estimating
disparities in the left image, and viceversa 8} [30, [10]. Some
of these methods are called ‘unsupervised’ by the authors.
However, the main learning mechanism is supervised learn-
ing and in a robotic context the supervised targets would
be generated from the robot’s own sensory inputs. Hence,
we will discuss these methods under the subsection on self-
supervised learning.

B. Fusion of monocular and multi-view depth estimates

Different approaches have been considered to explore how
monocular and multi-view cues (stereo can be posed as a par-
ticular case of multi-view where the views are horizontally
aligned) can be considered together to increase accuracy of
depth estimation. In [25] MRFs are used to model depths
in an over-segmented image according to an input vector
of features. This vector includes (i) monocular cues such
as edge filters and texture variations, (ii) the disparity map
resultant of stereo matching and (iii) relationships between
different small image patches. This model was then trained
on a data set collected using a laser scanner. After running
the model on the available test set, the conclusion was that
the accuracy of depth estimation increases when considering
information from monocular and stereo cues jointly.

A different approach was presented by Facil et al. [7].
Instead of jointly considering monocular and stereo cues, the
starting point consists of two finished depth maps: one dense
depth map generated by a single view estimator [5] and a
sparse depth map computed using a monocular multi-view
method [6]]. The underlying idea is that by combining the
reliable structure of the scene given by the CNN’s map with
the accuracy of selected low-error points from the sparse map
it should be possible to generate a final, more accurate depth
prediction. The introduced merging operation is a weighted
interpolation of depths over the set of pixels in the multi-view
map. The main contribution is an algorithm that improves
the depth estimate by merging sparse multi-view with dense
mono. However, there are two remarks which must be made:
(1) this study was limited to the fusion of sparse multi-view
and dense mono-depth and did not explore the fusion of two
dense depth maps and (ii) the CNN was trained and tested
in the same environment, which means that its performance
was expected to be good.

We hypothesize that if the CNN was tested in a different
environment its performance would be lower, affecting the
overall performance of the merging algorithm. Therefore, it



is important to incorporate strategies that help reducing the
gap between a CNN’s training and operational environment.
Self-supervised learning is one possible option.

C. Self-Supervised Learning

Self-supervised learning (SSL) is a learning setup in which
robots perform supervised learning, where the targets are
generated from their own sensors. A typical setup of SSL
is one in which the robot uses a trusted primary sensor
cue to train a secondary sensor cue. The benefit the robot
draws from this, typically lies in the different nature of
the sensor cues. For instance, one of the first successful
applications of SSL was in the context of the DARPA Grand
Challenge, in which the robot Stanley [27]] used laser-based
technology as supervisory input to train a color model for
terrain classification with a camera. As the camera could
see the road beyond the range of the laser scanner, using the
stereo system in regions which were not covered by the laser
extended the amount of terrain that was properly labeled as
drivable or not. Having more information about the terrain
ahead helped the team to drive faster and consequently win
the challenge.

Self-supervised learning of monocular depth estimation
is a more recent topic [28, |13, [19]. [13] conducted the
first study where stereo vision was used as supervisory
input to teach a single mono estimator how to predict
depths. However, as the focus of the study was more on the
behavioral aspects of SSL and all algorithms had to run on a
computationally limited robot in space [14], only the average
depth of the scene was learned. Of course, the average depth
does not suffice when aiming for more complex navigation
behaviors. Hence, in [17] a preliminary study was performed
on how SSL can be used to train a dense single still mono
estimator.

Also [8l 130, |10] learn monocular dense depth estimation,
but then by using an image reconstruction loss. Some of
these articles use the term ‘unsupervised learning’, as there
is no human supervision. Although it is just a matter of
semantics, we would put them in the category of ‘self-
supervised learning’, since the learning process is supervised
and - when used on a robot - the targets come from the robot
itself (with the right image values as learning targets when
estimating depths in the left image).

The current study is inspired by [3]], in which a first study
was conducted to understand under which conditions it is
beneficial to use ‘SSL fusion’, and in particular, the fusion of
a trusted primary sensor cue and a trained secondary sensory
cue. Both theoretical and empirical evidence was found that
SSL fusion leads to better results when the secondary cue
becomes accurate enough. SSL fusion was shown to work
on a rather limited real-world case study of height estimation
with a sonar and barometer. The goal of this article is not
as much to obtain the best depth estimation results known
to date, but to present a more complex, real-world case
study of SSL fusion. To this end we perform SSL fusion of
dense stereo and monocular depth estimates, with the latter
learning from sparse stereo targets. The potential merit of

this approach lies in showing that the concept of SSL fusion
can also generalize to complex real-world cases, where the
trusted primary cue is as accurate and reliable as stereo
vision.

III. METHODOLOGY OVERVIEW

Figure [I] illustrates the overall composition of the frame-
work for SSL fusion of stereo and still-mono depth estimates.
It can be broken down in four different *blocks’: (i) the stereo
estimation, (ii) the still-mono estimation, (iii) fusion of depth
estimates and (iv) SSL.

We expect that the fusion of stereo and monocular vision
will give more accurate, dense results than stereo vision
alone. This expectation is based on at least two reasons,
the first of which is of a geometrical nature (see fig[2).
Considering fig. |2| the two cameras face a brown wall in
the background and a black object close-by. Stereo vision
cannot provide depth information in the blue regions either
because these are not in the field of view of both cameras
or because the dark object is occluding them in one of
the cameras. If no post-processing was applied, the robot
would be ”blind” in these areas. However, a single monocular
estimator has no problem to provide depth estimates in those
regions as it only requires one view. The second reason is
while stereo depth estimation relies on triangulation, still
monocular depth estimation relies on very different visual
cues such as texture density, known object sizes, defocus,
etc. Hence, some problems of stereo vision are in principle
not a problem for still-mono: uniform or repetitive textures,
very close objects, etc.

[ Area out of sight
from both cameras
[z] Areas where stereo
has no information

Field of view of C}
- - Field of view of Cs2

Fig. 2. Example of how stereo vision can benefit from monocular
information: the regions where stereo vision is ’blind’ can be unveiled by
the monocular estimator, as in those areas a still mono estimator has a priori
no constraints to make a valid depth prediction. Note that for illustration
purposes, the scene and obstacle are quite close to the camera. In large
outdoor scenes with obstacles further away, the proportion of occluded areas
will be much smaller.

A. Monocular depth estimation

The monocular depth estimation is performed with the
Fully Convolutional Network (FCN) as used in [23]]. The
basis of this network is the well known VGG network of
[26], which is pruned of its fully connected layers. Out of
the 16 layers of the truncated VGG network, the first 8 were
kept fixed, while the others were finetuned for the task of
depth estimation. In order to accomodate for this task, in
[23]] two deconvolutional layers were added to the network



that bring the neural representation back to the desired depth
map resolution.

In [23]], the FCN was trained on depth maps obtained from
various visually highly realistic simulated environments. In
the current study, we will train and fine-tune the same layers,
but then using sparse stereo-based disparity measurements as
supervised targets. Specifically, we first apply the algorithm
of as implemented in OpenCV. Only the disparities at
image locations with sufficient vertical contrast are used for
training. To this end, we apply a vertical Sobel filter and
threshold the output to obtain a binarized map. We use this
map as a confidence map for the stereo disparity map.

We use the KITTI data set [9)], employing their pro-
vided standard partitioning of training and validation set.
The FCN was trained for 1000 epochs. In each epoch 32
images were loaded, and from these images we sampled
100 times a smaller batch of 8 images for training. The loss
function used was the mean absolute depth estimation error:
L= 5 X wwec | Zmi .,y = Zs..,|» where C is the set of
confident stereo vision estimates. After training, the average
absolute loss on the training set is [ = 0.01.

B. Dense stereo and dense still mono depth fusion

In contrast to [[7], we propose the fusion of dense stereo
vision and dense still mono. There are five main principles
behind the fusion operation: (i) as the CNN is better at
estimating relative depths [[7], its output should be scaled to
the stereo range, (ii) when a pixel is occluded only monocular
estimates are preserved, (iii) when stereo is considered
reliable, its estimates are preserved, (iv) when in a region
of low stereo confidence and if the relative depth estimates
are dissimilar, then the CNN is trusted more, and (v) again
when in a region of low stereo confidence but if the relative
depth estimates are similar, then the stereo is trusted more.

The scaling is done as follows.

Zmy.y — Min(Zy,) W

'm

Z,

M(x,y)

<+ min(Zg) + rs

where 1, = max(Z,,) — min(Z,,) and v, = max(Zs) —
min(Z,), and (z,y) is a pixel coordinate in the image. If the
stereo output is invalid, as in the case of occluded regions,
the depth in the fused map is set to the monocular estimate:

Z(:E’,y’) — ZWL(I/’y/) (2)

where (z/,y’) is an invalid stereo image coordinate.
For the remaining coordinates, the depths are fused ac-
cording to:

Z(x»y) A WC(w) ’ ZS(w) + (1 - WC(w)) ’

(W%s,y) ’ ZS(w) + (1 - Wsu,y)) ’ Zm(z,w) &)

where W, is a weight dependent on the confidence of the
stereo map at pixel (x,y), and Ws..,, & weight evaluating
the ratio between the normalized estimates from the CNN
and from the stereo algorithm at pixel (z,y). These weights
are defined below.

Since stereo vision involves finding correspondences in
the same image row, it relies on vertical contrasts in the
image. Hence, we make WC(I,y) dependent on such contrasts.
Specifically, we convolve the image with a vertical Sobel
filter and apply a threshold to obtain a binary map. This
map is subsequently convolved with a Gaussian blur filter of
a relatively large size and renormalized so that the maximal
edge value would result in W, =~ = 1. The blurring is
performed to capture the fact that pixels close to an edge will
likely still be well-matched due to the edge falling into their
support region (e.g., matching window in a block matching
scheme). Please see fig. [3] for the resulting confidence map
We.

Fig. 3. Left: original left RGB input. Right: stereo confidence map W,
overlaid with original left image. The confidence on the stereo estimate
is different than O for the white bright pixels, being the whitest ones those
where the confidence is maximal. The distribution of high confidence points
over the image is condensed especially closer to edges, fading out from
there. For instance, there is a negative gradient of brightness (or confidence)
going from the borders of the heater to the wall. Moreover, texture-less
regions such as the wall are, as expected, classified as low-confidence stereo
regions.

If Wc(w) < 1, the monocular and stereo estimates will
be fused together with the help of the weight Wy . In
the proposed fusion, more weight will be given to the stereo
vision estimate, if Zs(w) and mey) are close together.
However, when they are far apart, more weight will be
placed on Z, , . The reasoning behind this is that typically
monocular depth estimates capture quite well the rough
structure of the scene, while stereo vision estimates are
typically more accurate, but when wrong can result in quite

large outliers. This leads to the following formula:

Nan(vay) ;
W, Nz, (o,y) Zf NZS(ar,y) > NZm(z,y) (4)

@) Zo(o)
Nz, (29) if Nz (2y) < Nz, (a,y)

where Nz (zy) = Zm,, /max(Zy) and Nz (o,) =
Zs(y.,y/max(Zs).

Finally, after the merging operation a median filter with
a b x b kernel is used to smooth the final depth map and

reduce even more overall noise.

IV. OFF-LINE EXPERIMENTAL RESULTS

To evaluate the performance of the merging algorithms the
error metrics commonly found in the literature [5] are used:

*

o Threshold error: % of y s.t. maxz (%, %) =0 < thr

y

e Mean absolute relative difference: ﬁ Zye N \.y;iyl
TP

e Mean squared relative difference: ‘—]{” Zye N ”yyiy”

o Mean linear RMSE: \/ﬁ D oyen v —y*|?



o Mean log RMSE:\/ﬁ > yen |[logy — logy*||?

o Log scale invariant error:

2
3N Lyen (logy —logy* + § 32, n(logy” — log y))

, where y and y* are the estimated and corresponding ground
truth depth in meters, respectively, and NV is the set of points.

The main results of the experiments are summarized in
Table [Il Note that stereo vision is evaluated separately on
non-occluded pixels with ground truth and on all pixels with
ground-truth. The other estimators in the table are always
applied to all ground-truth pixels. The results of the proposed
fusion scheme are shown on the right in the table (FCN), and
on the left the results are shown for three variants that all
leave out one part of the merging algorithm. Surprisingly, a
version of the merging algorithm without monocular scaling
actually works the best, and also outperforms the stereo
vision algorithm more clearly than the merging algorithm
with scaling in Table E} Still, for what follows, we report on
the fusion results with scaling.

In order to get insight into the fusion process, we inves-
tigate the absolute errors of the stereo and monocular depth
estimators as a function of the ground-truth depth obtained
with the laser scanner. The results can be seen in fig. [

We make five main observations. First, in comparison to
the FCN monocular estimator, stereo vision in general gives
more accurate depth estimates, also at the larger depths.
Second, it can be seen that the monocular estimator provides
depth values that are closer than stereo vision, which was
limited to a maximal disparity of 64 pixels. Third, the accu-
racy of stereo vision becomes increasingly ‘wavy’ towards
80 meters. This is due to the nature of stereo vision, in which
the distance per additional pixel increases nonlinearly. The
employed code determines subpixel disparity estimates up
to a sixteenth of a pixel, but this does not fully prevent the
increasing error when between pixel disparities further away.
Fourth, stereo vision has a big absolute error peak at the low
distances. This is due to large outliers, where stereo vision
finds a better match at very large distances. Fifth, one may
think that the monocular depth estimation far away is too
bad for fusion. However, one has to realize that these results
are made without scaling the monocular estimates - which
can go beyond 80 meters, resulting in large errors. Moreover,
investigation of the error (y — y*) shows that the monocular
estimate is not biased in general. Finally, one has to realize
that the majority of the pixels in the KITTI dataset lies close
by, as can be seen in fig. [/l Hence, the closer pixels are most
important for the fusion result.

Figure [] and [5] provide a qualitative assessment of the
results. It illustrates three of the findings. First, the stereo
vision depth maps show that often close-by objects are
judged to be very far away (viz. the peak in fig. [l The
most evident example is the Recreational Vehicle (RV) in
the third column of fig. 5] Second, the proposed fusion
scheme is able to remove many of the stereo vision errors.
Evidently, all occluded areas are filled in by monocular
vision, improving depth estimation there. It also removes

many of the small image patches mistakingly judged as very
far away by the stereo vision. However, fusion does not
always solve the entire problem - the aforementioned RV is
an evident example of this. Indeed, the corresponding image
in the fifth row shows that the fusion scheme puts a high
weight on the stereo vision estimates (red), while the error
in these regions is much lower for mono vision (blue in the
sixth row). To help the reader interpret the fifth and sixth
row; Ideally, if an image coordinate is colored in the sixth
row (meaning that one method has a much higher error than
the other), the image in the fifth row (confidence map) should
have the same color. Third, the red areas in the images in
the sixth row illustrate that monocular estimates are indeed
less good than stereo vision at long distances.

V. ON-BOARD EXPERIMENTAL RESULTS

In order to investigate whether SSL stereo and mono
fusion can also lead to better depth estimation on a com-
putationally restricted robot, we have performed tests on
board of a small drone. The experimental setup consisted of
a Parrot SLAMDunk coupled to a Parrot Bebop drone and
aligned with its longitudinal body axis. The stereo estimation
used the semi-global block matching algorithm [15] also
used in the off-board experiments. On board, we used the
raw disparity maps without any type of post-processing. For
monocular depth perception we used a very light-weight
Convolutional Neural Network (CNN), i.e., only the coarse
network of Ivanecky’s CNN [16]. Due to computational
limitations it was not possible to run the full network on-
board. In these experiments, we use the network weight that
were trained for the images of the NYU V2 data set and
predicts depths up to 10 meters.

To test the performance of the merging algorithm the drone
was flown both indoors and outdoors. The algorithms ran in
real-time at 4 frames per second with all the processing being
done on board. Selected frames and corresponding depth
maps from the test flights are shown in fig. [§]

There are clear differences between the three depth esti-
mates. The stereo algorithm provides a semi-dense solution
contaminated with a lot of noise (sparse purple estimates). Its
performance is significantly deteriorated by the presence of
the blades in lower regions of the images. The coarse network
provides a solution without too much detail but where it is
possible to understand the global composition of the scene.
Finally, the merged depth map provides the most reliable
solution. Except for the first row, where the bad monocular
prediction induces errors in the final prediction, the merged
map has more detail, less noise and the relative positions of
the objects are better described. Although very preliminary,
and in the absence of a ground-truth sensor, these results
are promising for the on-board application of the proposed
self-supervised fusion scheme.

VI. CONCLUSION

In this article we investigated the fusion of a stereo vision
depth estimator with a self-supervised learned monocular
depth estimator. To this end, we presented a novel algorithm



Fig. 4. Visual comparison between different depth maps using the same color scheme. Five images from Kitti were selected. Row 1) the rgb image. 2)
Stereo depth map. 3) Still-mono depth map. 4) The merged depth map. 5) The confidence map (red is high stereo confidence, blue for mono). 6) The
difference in error when compared against the Velodyne ground truth between mono and stereo (red for high mono errors, blue for high stereo errors). 7
Velodyne depth map.

Fig. 5. Part 2, same legend as [4]



TABLE I
ERRORS PER METHOD. BEST RESULTS ON ALL GROUND-TRUTH PIXELS IN BOLD.

No weighting No monocular scaling Average scaling Stereo FCN
SSL Fused SSL | SSL  Fused SSL SSL Fused SSL | Non-occ only Incl Occ | SSL Fused SSL
threshold 0<1.25 0,38 0,52 0,72 0,85 0,25 0,77 0,92 0,88 0,38 0,60
threshold §<1.252 0,68 0,32 091 0,96 0,44 0,95 0,97 0,92 0,68 0,95
threshold §<1.253 0,84 0,93 0,96 0,98 0,59 0,97 0,98 0,93 0,84 0,98
abs relative difference | 0,31 0,25 020 0,20 0,48 0,23 0,26 0,29 0,31 0,24
sqr relative difference 3,38 2,20 2,16 3,00 498 3,50 7,61 7,63 3,38 3,17
RMSE (linear) 10,22 7,86 7,67 547 10,24 5,92 6,29 7,19 10,22 6,14
RMSE (log) 0,48 0,36 027 0,24 1,01 0,33 0,28 2,46 0,48 0,30
RMSE (log, scale inv.) | 0,05 0,04 0,03 0,03 0,31 0,05 0,04 2,95 0,05 0,03
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Fig. 7. Histogram of the depths measured by the Velodyne laser scanner.
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Fig. 6. Relation between the absolute error |y — y*| (y-axis) and the
ground truth distance y* (x-axis). The solid lines indicate the median of
the error distributions, while the light shading goes from 5% to 95% of
the distribution and the darker shading from 25% to 75%. The results for
monocular depth estimation are shown in red, while the results for stereo
depth estimation are shown in blue.
for dense depth fusion that preserves stereo estimates in high
stereo confidence areas and uses the output of a CNN to
correct for possibly wrong stereo estimates in low confidence ) .
and occluded regions. The experimental results show that the om 1om 20m
roposed self-supervised fusion indeed leads to better results.
prop P Fig. 8.  From left to right: left RGB input, stereo depth map, output of

The analysis suggests that in our experiments, stereo vision
is more accurate than monocular vision at most distances,
except close by.

We identify three main directions of future research. First,
the current fusion of stereo and mono vision still involves
a predetermined fusion scheme. This, while the accuracy of
the monocular estimates may depend on the environment and
hardware. For this reason, in [3]], the robot used the trusted
primary cue to determine the uncertainty of the learned
secondary cue in an online process. This uncertainty was
then used for fusing the two cues. A similar setup should
be investigated here. Second, the performance obtained with
our proposed fusion scheme is significantly lower than that
of the image-reconstruction-based SSL setup in [[10]. We did
not perform any thorough investigation of network structure,

coarse network and final merged map.

training procedure, etc. to optimize the monocular estimation
performance, but such an effort would be of interest. Third,
and foremost, we selected this task, as stereo vision is
typically considered to be very reliable. The fact that even
sub-optimal monocular estimators can be fused with stereo
to improve the robot’s depth estimation, is encouraging for
finding other application areas of SSL fusion.
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