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Abstract

There are two main approaches to active vision for classification. The
probabilistic approach employs a belief state concerning the class of the in-
stance and selects actions to reduce uncertainty in the belief state. The
situated approach directly learns a mapping from observations to actions
(including the classification), driven by the performance on the classification
task. One of the advantages of the probabilistic approach is that its action
selection takes uncertainty into account. In this paper, we show that the
situated approach also takes uncertainty into account in its action selection.
To this end, we investigate how a situated gaze-control model without any
memory can improve its performance over time in a classification task. We
show that it does so by reducing the entropy of the posterior distributions of
the possible observations. In this manner, the situated gaze-control model
reduces class uncertainty in its observations. In addition, we show that the
fixation location of the model serves as a memory of previous observations,
which allows the memory-less model to verify conjunctions and disjunctions
of facial properties.

1 Introduction

Performance on visual tasks such as classification can be enhanced by employing
active vision models. Such models do not passively receive observations, but have
to some extent control over the observations they perceive. There are two main
approaches to constructing active vision models. In the probabilistic approach,
active vision models are defined within a probabilistic framework [6]. For example,
a classification model starts with uncertainty on the class of the current instance.
This uncertainty is modelled explicitly by a belief state representing a probability
distribution over all possible classes. The initial belief state is usually a uniform
distribution over all possible classes. Subsequently, the model selects actions so
that class uncertainty is reduced. Since entropy is a measure of uncertainty, a
typical method of action selection is to estimate the entropy of the posterior class
distribution after performing an action and to select the action resulting in the
minimal entropy [1]. In the situated approach, the uncertainty in vision is not
explicitly modelled. Instead, the situated approach typically employs an action
selection policy that directly maps observations to actions [2]. The action selection
policy is optimised for a specific task, for instance by evolutionary algorithms [3],
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only driven by the performance on the task. We refer to this approach as the
situated approach, since it relies on finding a policy that exploits the situated
nature of the model, i.e., that exploits the closed loop of actions and observations.

Advocates of the probabilistic approach sometimes criticise the situated ap-
proach, mainly because of the employment of memory-less policies [6]: “Obvious
limits in perception (e.g., robots cannot see through walls) pose clear boundaries
on the type of tasks that can be tackled with this approach.” The limitations of
memory-less active vision behaviour have also been discussed by the advocates of
the situated approach [4]. An advantage of the probabilistic approach mentioned
in [6] is that uncertainty is acknowledged in action selection. For instance, in a
classification task, probabilistic active vision models can select actions to reduce
class uncertainty and improve classification performance over time.

In [2] it was shown that a memory-less situated model, too, can select actions
so that its classification performance increases over time. Apparently, observations
are ‘remembered’ in some way to improve the performance. Since this seems to
contradict with the memory-less nature of the model, we here examine the follow-
ing research question: How does an active vision classification model of the situated
approach increase its performance over time? To answer the research question we
adjust the situated active vision model in [2], so that it is more amenable to anal-
ysis, and apply it to the task of gender recognition in natural images. We analyse
the model’s behaviour within a probabilistic framework to facilitate a comparison
with probabilistic active vision models. We explicitly state that we are interested
in the manner in which the model improves its performance over time, and not in
achieving the best classification performance.

The remainder of the paper is organised as follows. We discuss the active vision
model in Section 2. In Section 3 we explain the experimental setup. In Section 4
we analyse the results within a probabilistic framework and draw our conclusion
in Section 5.

2 The Model

In Subsection 2.1 we give an overview of the model and we discuss its adaptable
parameters in Subsection 2.2.

2.1 Overview

Figure 1 shows an overview of the situated active vision model. It consists of
three modules: a sensory module, a controller module, and a classifier module.
The first module receives as sensory input the raw input from the window with
centre ’x’, the current fixation location (see box I in Fig. 1). From that window
input features are extracted (see [2] for further details). The vector of real-valued
features is mapped onto a limited number of prototypes, with each prototype
representing one discrete state. The state is determined with a nearest-neighbour
approach, i.e., the prototype with the smallest distance to the extracted feature
vector represents the state. The prototypes are optimised by the evolutionary
algorithm (see Subsection 2.2). The second module is a controller that maps the
sensory state (as calculated by the first module) to an action, i.e., a gaze shift in



the image. The controller is a state-action table that assigns a value in the range
[-1, 1] to each state-action pair. It executes the action that has the highest value in
the current state. All gaze shifts are restricted to a grid around the current fixation
location, as illustrated in Figure 2. ‘w’ and ‘h’ indicate the maximal horizontal
and vertical displacement. The arrow illustrates a possible gaze shift. At the
new fixation location, new sensory inputs are received by the first module. The
third module is a classifier that maps the sensory state to a class. The classifier
is a state-class table that assigns a value in the range [-1, 1] to each state-class
pair. The classifier only classifies the last sensory state of a fixation sequence, by
selecting the class with the highest value for that state.
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Figure 1: Overview of the active vision model.
An ‘x’ marks the current fixation location.
The three modules that constitute the model
are illustrated by the boxes ‘I’, ‘II’, and ‘III’.
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Figure 2: Grid indicating the lo-
cations to which the model can
shift its gaze from the current fix-
ation location ‘x’.

2.2 Adaptable Parameters

Five parameter types will define specific instantiations of the model. We refer to
these instantiations as agents. The five parameter types are: the input features, the
scale of the raw input window from which features are extracted, the prototypes,
the values in the controller’s state-action table, and the values in the classifier’s
state-class table. An evolutionary algorithm generates and optimises the agents
(i.e., parameter values) by evaluating their performance on the recognition task.

3 Experimental setup

In this section, we describe the gender-recognition task to which we apply the
active vision model (Subsection 3.1). In addition, we discuss the evolutionary
algorithm that optimises the model’s adaptable parameters (Subsection 3.2). Fi-
nally, we indicate the experimental settings (Subsection 3.3).

3.1 Gender Recognition Task

We apply the active vision model to the gender-recognition task described in [2].
The data set for the experiment consists of images from J.E. Litton of the Karolin-



ska Institutet in Sweden. It contains 278 images with angry-looking and happy-
looking human subjects. The images are converted to gray-scale images and resized
to 600× 800 pixels. One half of the image set serves as a training set for the sit-
uated model of gaze control, that has to determine whether an image contains a
male or a female face, based on the input features extracted from the gray-scale
images. The initial fixation location of the active vision model is defined to be the
centre of the image. The subsequent (T −1) ≥ 1 fixation locations are determined
by the controller. At the last fixation the model assigns a class to the image. After
optimising classification on the training set, the remaining half of the image set
is used as a test set to determine the performance of the optimised gaze-control
model. Both training set and test set consist of 50% males and 50% females.

3.2 Evolutionary Algorithm

An evolutionary algorithm optimises the parameter values that define the situated
agents, i.e., instantiations of the situated model. We choose an evolutionary algo-
rithm as our training paradigm, since it allows self-organisation of the closed loop
of actions and inputs. In our experiment, we perform 15 independent ‘evolutionary
runs’ to obtain a reliable estimate of the average performance. Each evolution-
ary run starts by creating an initial population of M randomly initialised agents.
Each agent operates on every image in the training set, and its performance is
determined by the following fitness function: f(a) = c/I, in which a represents
the agent, c is the amount of correctly classified images in the training set, and
I is the total number of images in the training set. The M/2 agents with the
highest performance are selected to form the population of the next generation.
Their adaptable parameter sets are mutated with probability Pf for the input fea-
ture parameters and Pg for the other parameters, e.g., representing prototypes or
state-action table values. If mutation occurs, a feature parameter is perturbed by
adding a random number drawn from the interval [−pf ; pf ]. For the other types
of parameters, this interval is [−pg; pg]. For every evolutionary run, the selection
and reproduction operations are performed for G generations.

3.3 Experimental settings

In our experiment the model uses ten input features. Furthermore, the model
has a list of ten prototype feature vectors, corresponding to ten distinct states.
Preliminary experiments indicated this number of vectors to be sufficient. The
scale of the window from which the input features are extracted ranges from 50 to
150 pixels. Furthermore, h = 38 and w = 28 pixels, so that there are 20×20 = 400
grid points in an image that can be fixated. The evolutionary algorithm has the
following parameter settings: M = 30, G = 300, and T = 4. The mutation
parameters are: Pf = 0.02, Pg = 0.10, pf = 0.5, and pg = 0.1.

4 Results

We first discuss the performance of the active vision model in Subsection 4.1 and
then analyse its behaviour in Subsection 4.2.



4.1 Performance

The results of the agents are expressed in the proportion of correctly classified
images on the test set. The performance of the active vision model averaged over
15 independent evolutionary runs was 74,88%, with a standard deviation of 5,75%.
As expected, the performance of all agents increases over time, implying that the
adjusted active vision model exhibits sensible gaze behaviour.

4.2 Analysis

In this subsection, we analyse a typical evolved agent to study how it achieves an
increase in performance over time. As described in Section 3, the evolutionary al-
gorithm optimises the prototype feature vectors that determine the sensory states.
During execution of the task, the agent only encounters three of the ten possible
sensory states (henceforth referred to as o1, o2, and o3). Apparently, seven out of
ten prototype feature vectors are never close to the extracted feature vector. The
classifier maps o1 to ‘female’, and both o2 and o3 to ‘male’. The controller shifts
the gaze to the left in the case of o1 and o2, and to the top left in the case of o3.

4.2.1 Probabilistic Behavioural Explanation

We first describe the general behaviour of the agent, and then we analyse the
agent’s behaviour within a probabilistic framework.

The first fixation location at the centre of the image is usually located at the
eye-brows. Darker and thicker eye-brows result in o1 or o2, so that the agent shifts
its gaze to the left. For such images, the gaze keeps shifting to the left for the
remaining three time steps, generally ending with o2 (associated with male images)
at the final time step. If the eye-brows are lighter, thinner, or not present at the
first fixation location, the resulting observation is o3. Consequently, the gaze shifts
to the top left, located on the forehead. This leads to a new observation of o3. Only
if the agent fixates the hair(line) of a person, the observation changes to o1, the
observation associated with female images. The controller maps this observation
to a gaze shift to the left, into to the hair of the person, which leads once more to
an observation of o1. If the agent does not reach the hairline within 4 time steps,
the observation is still o3, associated with male images. In other words, for male
images the agent verifies a disjunction of facial properties (dark eye-brows or a
high hairline) and for female images a conjunction of facial properties (light eye-
brows and a low hairline). Since the conditions of the conjunction or disjunction
are verified at different time steps, the performance increases over time.

In terms of a probabilistic framework, the controller and the classifier have
two different roles. The role of the classifier is to act as a Maximum A Posteriori
classifier (MAP-classifier) at the last time step. A MAP-classifier is a classifier
that maps an observation to the most probable class. The performance of a MAP-
classifier is negatively correlated to the entropy of the posterior distribution. In
our experiments, the entropy is maximal if an observation can equally probably
be caused by a male as by a female image. It is minimal if an observation can
only be caused by either a male or a female image. In fact, the role of the agent’s
controller is to minimise the entropy of the posterior probability distribution over



time. We show this by calculating the entropy for every time step. We define the
entropy E at a time step as the weighted sum of the Shannon entropies [5] for all
different observations at that time step, as follows:

E =
∑

o

P (o) H(P (C | o)) (1)

H(P (C | o)) =
∑

c

P (c | o) log2(
1

P (c | o) ) (2)

in which P (o) is the probability for observation o and H(P (C | o)) is the Shannon
entropy of the posterior probability distribution for observation o. Furthermore,
C is the set of all mutually exclusive classes c. Figure 3 shows the entropy over
time of the analysed agent (dotted line). It slightly increases from t = 1 to t = 3,
and then decreases from t = 3 to t = 4. Note that this policy can only be
found with non-greedy search: greedy search would never result in an increase of
entropy. Figure 3 also shows the performance of the agent (solid line) and the
performance of a MAP-classifier (dashed line) over time. The MAP-classifier’s
performance first decreases from t = 1 to t = 3, and then increases from t = 3
to t = 4. It outperforms the agent’s classifier on the first three time steps, but
has a performance equal to the agent’s classifier at the last time step. Hence, the
agent’s classifier is a MAP-classifier for the last time step. Figure 4 shows the
same information as Figure 3, but then averaged over all agents. It shows that the
findings for the analysed agent are representative for all evolved agents, although
the entropy generally decreases more smoothly. These results show that situated
agents reduce the entropy of the posterior probability distribution, i.e., the class
uncertainty in the observations, over time, without employing belief states.
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Figure 3: Entropy, agent performance,
and MAP-classifier performance over
time of the analysed agent on the train-
ing set.
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Figure 4: Entropy, agent performance, and
MAP-classifier performance over time on
the training set, averaged over all evolu-
tionary runs.



4.2.2 Memory

The analysis above indicates that observations are ‘remembered’ in some way
to improve performance over time. This is surprising, since the controller and
classifier are both tables that perform a memory-less mapping from sensory states
to actions or classifications, respectively. In this section, we show that the agent
exploits an ‘external memory’ (cf. [7]).

Figure 5 shows the fixation locations of the agent on the whole training set,
with all different gaze paths exhibited by the agent. The background image is
included to give a rough impression of how the fixation locations relate to facial
features. It is the mean image of four training set images, two male and two female
images. The figure illustrates that the fixation location contains information on
the observation history. For instance, the fixation location indicated with a ‘*’ is
only reached if the observation history for the first three time steps is (o3, o3, o3),
observations that result in three gaze shifts to the top left. Therefore, the fixation
location can be regarded as a memory of the preceding observations. Since this
memory is not part of the agent’s internal mechanism, but part of the state of the
world, it can be regarded as an external memory.

t= 1t= 2t= 3t= 4

*

Figure 5: Fixation locations of the agent on the whole training set, with all different
gaze paths.

The observation history influences the observation at the last time step, since
the fixation location determines the probability distribution of the observations.
In other words, each observation depends on the preceding observations by means
of the external memory. To show that there is such a dependence, it is sufficient
to analyse the first two time steps. At the first time step, the probabilities (as es-
timated with the training set) for the different observations perceived by the agent
are: P (o1(1)) = 0.04, P (o2(1)) = 0.47, and P (o3(1)) = 0.49. The probabilities at
the second time step are P (o1(2)) = 0.02, P (o2(2)) = 0.51, and P (o3(2)) = 0.47.
Hence, the probabilities for the observations at the first two time steps are rather
similar. However, observations at different time steps depend on each other by
means of the fixation locations. For example, given an observation o2 at the sec-
ond time step, it is very probable that the agent also observed o2 at the first time
step: P (o2(1) | o2(2)) = 0.92, P (o1(1) | o2(2)) = 0.08, and P (o3(1) | o2(2)) = 0.
Since P (o2(1) | o2(2)) > P (o2(1)), the observation at the second time step is a
form of memory. In the same manner, o1(1) and o3(1) are remembered in the



observation at t = 2; P (o3(1) | o1(2)) = 1, and P (o3(1) | o3(2)) = 1. The cause of
this high dependence between the second and the first observation, is that the ob-
servation probability distributions are very different at the two fixation locations
for t = 2, and that the agent fixates one of those locations on the basis of the
first observation. In a similar fashion, the observations at the last time step are
dependent on the whole sequence of previous observations.

5 Conclusion

From the experiments, we may conclude that the situated active vision model
increases its performance over time by reducing the entropy of the posterior dis-
tributions of the possible observations with its controller. This implies that the
situated gaze-control model reduces class uncertainty in its observations, instead
of reducing class uncertainty in a belief state as probabilistic models. The fixation
location of the model serves as an external memory of previous observations, which
allows the model to verify conjunctions and disjunctions of facial properties.

We envisage two directions of future research. First, we want to compare a
model of the probabilistic approach more closely with a model of the situated ap-
proach. One interesting aspect about such a comparison is that most probabilistic
models of active vision assume independence of subsequent observations, while
the situated model discussed in this paper bases its policy on the dependencies
between observations (see the analysis in Section 4). Second, we want to study
situated models of gaze control that have an internal memory. A possible research
question on such models is, whether they develop a mechanism that acts similarly
to a belief state.
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