Timing is important: delaying action execution in
Plastic Neural Networks

B. Torben-Nielsen G. de Croon E.O. Postma

Universiteit Maastricht
Institute for Knowledge and Agent Technologies (IKAT)
P.O. Box 616, 6200 MD Maastricht, the Netherlands

{b .torben-nielsen,g.decroon, postma}@cs .unimaas.nl

Abstract

Plastic Neural Networks (PNNs) are known for their ability to adapt
to environmental changes. It is generally believed that PNNs cannot solve
timing tasks which require a predefined delay before execution of an action.
In this study we investigate the ability of PNNs to solve timing tasks. Our
experiments evolve PNNs to perform successfully on a task requiring the
delayed execution of an action. The results of our experiments show that
PNNs are capable of solving the timing task. We analyse the underlying
mechanism and find it is based on slow neural activation dynamics. The
mechanism is discussed in relation to mechanisms found in other neural
models. We conclude that any neural model that can accommodate slow
activation dynamics can solve the timing task.

1 Introduction

Evolutionary robotics is a popular paradigm to develop neural controllers for ro-
bots [6]. Robotic systems built according to this paradigm have the property of
adapting to dynamical environments without human intervention [4]. A technique
which is especially articulated as adaptive and robust to environmental changes
is the plastic controller based on Plastic Neural Networks (PNN) [4, 5, 12]. This
technique is a neural networks with adaptive synapses which are updated on-line
using simple learning rules. Plastic controllers proved to cope with environmen-
tal changes like changes in sensor response, changes in sensory appearance, re-
arrangement of environmental configuration, and, transfer across different robot
platforms [4].

The adaptive capabilities of PNNs as compared to other neural models (such
as the continuous time recurrent network - CTRNN), has been subject of debate.
The debate started with a comparison between the CTRNN and PNN [2]. The
light-switching task involves a rectangular arena with two locations: the home
location and light-switch location (indicated by a black line on the wall of the
arena). Starting from an initial position in between the two locations, the robot
has to move towards the light switch and go further to the home location where is
has to stay. The movement of the robot was restricted to forward and backward

movement. Both the CTRNN and the PNN successfully performed the light-
switching task. It was concluded that the PNN and CTRNN “displayed similar
performances”[2].

As a reaction to these newly gained insights, a second comparison was con-
ducted by [10]. They proposed that the similar results of the CTRNN and PNN
found earlier were due to the ceiling effect: the task was relatively simple and
both PNN and CTRNN performed optimal. To overcome the ceiling effect, a
more complex task was employed in which the robot has to notice in time that
another action was required for execution. In this timing task it was found that
the CTRNN succeeded in 70% procent of the experimental runs and the PNN
didn’t succeed a single run. They concluded that “there may actually be signifi-
cant differences in the ability of CTRNNs and PNNs to perform tasks requiring
learning”; they attribute this difference to the inability of PNNs to delay the action
execution.

In this study we want to clarify whether PNNs can time the action execution.
The research question central to this stud reads: can PNNs solve the timing task?.
An elementary timing task is used to investigate the ability to time actions. The
experimental setup is described in the next section. The results from the exper-
iment and an analysis of these results is given in Section 3. Finally, in Section 4
we discuss our results and provide a conclusion.

2 Experimental setup

The experimental setup involves the agent controller (subsection 2.1), the plastic
neural network model (subsection 2.2), the genetic algorithm (subsection 2.3), and
the experimental environment and task (subsection 2.4).

2.1 Agent controller

The robot is controlled by a plastic neural network with a fixed topology. As
in [10] our network consists of 5 neurons: a bias neuron with constant input of
1, two input neuron activated by the distance sensors attached to the left and
right side of the robot, respectively!, one inter neuron or hidden neuron, and one
output neuron whose output is linearly mapped onto the interval | — 10, 10[which
is required for the simulator.

2.2 Plastic neural network model

Our PNN model is a fully recurrent plastic neural network and is based on [12].
The activity of neuron y; is updated every sensory-motor cycle using the equation
below.

N
= o)l 0

ISince the robot is only permitted to move in one direction, the information picked up by the
two sensors is redundant.

In the above equation, ¢ is the transfer function of the neuron and is defined
as: o(x) = (1 + e%)~!. The sensory input to the i-th neuron, I; is normalized
onto the unit interval (0 < I; < 1). Synapses are randomly initialised in the range
[0,0.1] and updated every sensory-motor cycle according to the formula below.

With 7 representing the learning rate that can assume one of four discrete
values, i.e., n € {0,0.3,0.6,0.9}. For the synaptic weight update Aw;;, one of the
four learning rules applies:

1. Plain Hebb rule: Awij = (1 - wij)miyj,
2. Post synaptic rule: Aw;; = wij(—1 + z;)y; + (1 — wij)zy,,
3. Presynaptic rule: Aw;; = w;;z;(—1+y;) + (1 — wij)zy;,

4. Covariance rule: Aw;; = { (1= wig) Flaiyy)]:(xi’yj)? 0 .
wij F(xi, ;) otherwise

In the above equations x; refers to the pre-synaptic neuron and y; to the post-
synaptic neuron of the connection with weight w;;. The function F = tanh(4(1 —
|z; — y;]) — 2) maps the difference between the activations x; and y; onto the
interval [—1,+1]. All four learning rules employ a self-limiting component (1—w;;)
to ensure that the synaptic strength remains on the unit interval and that the sign
of the synapse is not changing.

2.3 Genetic algorithm (GA)

A genetic algorithm is used to optimise the parameters of the robot for the timing
task. We employ synapse encoding so every synapse is represented by one gene.
Each gene represents the three properties defining the behaviour of a synapse:
sign, learning rate, and learning rule [4]. The population consists of 50 individuals.
Initially, at ¢ = 0 all individuals have random synaptic strengths. Individuals are
tested in trials of 350 time steps and the 10 best individuals of the generation are
used for reproduction. Reproduction is done with single point cross-over and gene
mutation; cross-over probability was 0.3 and mutation occurred with probability
0.05.

2.4 Experimental environment and task

Figure 1 (left) illustrates the timing task. The agent is placed inside a tunnel
and is able to move forwards and backwards. The target cannot be sensed by
the robot and is located between the two parallel lines in front of the agent (only
shown for illustrative reasons). The robot cannot perceive whether it is located
in the target region or at some other position outside the tunnel, because the
sensors are not activated at these locations. Successful performance in this task
implies that the agent learns to delay the execution of actions. The robot is always

starting facing forward and at approximately the same starting position as shown
in Figure 1 (left). Individuals are evaluated using the following global external
fitness function. The fitness is continuous, i.e., the fitness is adjusted after each
performed step of the trial.

t=#steps 2 on target at step t
F= Z ft, where fy = ¢ —1.5 past target at step t
t=1 a =1[0,1] elsewhere at step t

Where « is defined as the normalized inverse distance to the target position. In-
dividuals are encouraged to move forward and are rewarded when located in the
target position. Penalties are given whenever an individual moves beyond the tar-
get location. The rationale behind the fitness function is that individuals should
move as fast as possible towards the target position while decreasing their speed to
null (until the target position is reached). A priori, we consider the possible evo-
lution of three strategies for performing successful behaviour in the timing task:
(1) continuous decrease of velocity until a complete standstill is reached at the
target position, (2) driving forward until the end of the tunnel and then start
decelerating as in (1), and, (3) driving forward out of the tunnel and start driving
at a certain speed which maximizes the time is spent in the target position. The
definition of the fitness function does not favour one of these strategies. Only the
first 2 strategies show the capability of the controller to delay its action: the robot
comes to a full stop when the neural activity of the motor neurons decays to null?.

Experiments described in this report are performed in a modified version of
the WSU Khepera simulator[9]. The Khepera robot and its sensory configuration
are illustrated in Figure 1 (right).

Figure 1: Left: experimental task. Right: the Khepera robot with eight infra-red
distance sensors.

3 Results and analysis

We conducted 10 evolutionary runs consisting of 200 generations each. One of the
10 runs yielded an individual that solved the timing task. We examined the best

20ther strategies are also possible since genetic algorithms only optimize the fitness function
rather than explicitely prescribing how to achieve a certain results. One other strategy might be
that a robot runs in either direction and changes direction before stopping in the target region.
Such a strategy also illustrates the capability of a robot to delay the action execution, but is
unlikely to occur.

individuals of each evolutionary run and found robots which evolved a desired
strategy (displaying their ability to delay their action execution), i.e., stopping
after a learned amount of time steps.

8 250
G
>
200t 1 | | | | 1]
50 100 150 200 250 300 350
: " %
a
£
0 1 | L | I |]
50 100 150 200 250 300 350
0.55
c
5]
S 054
I
0.53 I I I I I I)
50 100 150 200 250 300 350
5 0.65
2
5 06
(e}
055 ‘ . ‘
50 100 150 200 250 300 350
2
S
] 1
: LA LR AR AR
0 I I)
50 100 150 200 250 300 350

Figure 2: Tllustration of the behaviour and internal dynamics of a robot solving the
timing task. The five plots show (from top to bottom): (1) the vertical position
of the robot as a function of time (the two horizontal parallel lines indicate the
target region), (2) the sensory input as a function of time (for ¢ > 50 the input
is constant), (3) the activity of the hidden neuron and (4) output neuron as a
function of time, and (5) the motor signal generated by the actuator as a function
of time. (The test run lasted 500 time steps, but the last 150 steps no changes
occur.)

One such robot following strategy (2), i.e. leaving the tunnel before decreas-
ing its speed, is analysed. Figure 2 contains five plots illustrating the behaviour
obtained by this robot. From top to bottom these plots illustrate (1) the robot’s
vertical position, (2) the normalized sensory input coming from the distance sen-
sors, (3) the neural activity of the hidden neuron, (4) the neural activity of the
output neuron, (5) the actual motor command issued to the robot. The top di-
agram illustrates that the speed of the robot decreases more and more when the
robot approaches the end of the target region. It finally stops just in front of the
(for the robot inperceptual) boundary of the target region. The speed decreases in
three phases, related to the change of the input. The final decrease to zero speed
takes place when the robot already entered the target region.

Figure 3 illustrates the neural activities and the synaptic weights over time. It
can be observed that some synaptic weights change over a large amount of time

Neural activity
Synaptic strengths

; WHL

L L L L L L L L L
] 50 100 150 200 250 300 350 400 450 500
Time

Figure 3: Left and right diagram illustrate the progression over time of the neurons
(left) and synapses (right), respectively.

o ~

Averaged motor output (window 25)

o5k

0 50 100 150 200 250 300 350 400 450 500

Figure 4: Left: detail of the progression of neural activity in the first input neu-
ron. Over time, the bias neuron gains influence on the first input neuron. Right:
averaged output speed. The average is taken over a time window of 25 steps. The
decrease lasts as long as the decrease in activity of the first sensor neuron.

steps, i.e. they converge slowly to their equillibrium. The synapse requiring the
longest amount of time to converge connects the bias neuron with the first input
neuron. As a result, the neural activity of the input neuron decreases during the
period of synaptic strength decay. The final outcome of the output neuron is
strongly influenced by the first sensory neuron due to an inhibitory connection
using the covariance learning rule with a high learning rate (0.9). The properties
of the synapse connecting the input neuron and the output neuron ensure accurate
response of the motor output to changes in the neural activity in the first input
neuron (Figure 4, left). The slow changing dynamics of the neural substrate result
in a continual decrease in speed (Figure 4, right). The robot has learned to delay
its action execution.

Reference tests were conducted with the same controller to ensure strategy
(2) was employed: regardless the initial position of the robot inside the tunnel,
the robot has to stop after a learned amount of time. In this experiment, the
robot started either at the end or beginning of the tunnel. It was observed that in
both cases the robot needed 300 time steps to decrease its speed to null from the
moment it left the tunnel (data not shown). This evolved strategy shows that the
controller is either capable of integrating over persistent absence of stimuli [11] or
has learnt how to count time steps. The result is equivalent: the robot delays its
stopping action until a learned amount of time has passed.

4 Discussion and conclusion

Research in embodied cognitive science is shifting its emphasis from reactive agents
to pro-active agents [8]. As a consequence, the focus is shifting from feed forward
neural networks to more complex new neural networks that have some form of
memory, such as the continuous Time Recurrent Neural Network (CTRNN) [1],
the Dynamic Neural Network (DNN) [7], Time Delay Recurrent Neural Network
(TDRNN) [3], Plastic Neural Network (PNN) [4]. These neural networks differ
in their ability to deal with complex tasks. For example, several studies indicate
that it is important for (neural) controllers to be able to exploit time dynamics
[7, 10, 3, 11]. Open questions are whether we can explicate types of time dynamics
that have to be exploited by successful pro-active agents, and whether we can
design neural controllers that are able to exploit these dynamics. One type of
time dynamics is the possibility for delaying the execution of actions. In our
study, we showed that a PNN-controller can delay actions, so that it performs well
on a timing task. The analysis suggests that the underlying mechanism facilitating
the delay of actions is the slow change of synapse weights. Earlier findings [3, 11]
also suggest that slow activation dynamics in a neural controller are required for
performing timing tasks. Therefore, it seems that slow activation dynamics form
one of the time dynamics necessary for successful proactive behaviour.

We started this study with the research question if PNNs can solve the timing
task. The results show that a PNN is able to delay the action execution for solving
the timing task. Analysis of the behaviour of the successfully evolved robot showed
that slowly changing neural dynamics underlies this ability. Together with the
results of other studies discussed in the previous section, we can conclude that
neural networks can time action when they allow slow activation dynamics.

Acknowledgments

The research reported here is part of the Interactive Collaborative Information
Systems (ICIS) project, supported by the Dutch Ministry of Economic Affairs,
grant nr: BSIK03024. Numerous colleagues are thanked for performing the real-
time experiments on their personal computers.

References

[1]

2]

R.D. Beer. On the dynamics of small continuous-time recurrent neural net-
works. Adaptive Behavior, 3(4):471-511, 1995.

J. Blynel and D. Floreano. Levels of dynamics and adaptive behavior in
evolutionary neural controllers. In Proceedings of the seventh international
conference on simulation of adaptive behavior on From animals to animats,
pages 272 — 281, 2002.

de Croon G., Nolfi S., and Postma E.O. Toward pro-active embodied agents:
On the importance of neural mechanisms suitable to process information in
time.

D. Floreano and J. Urzelai. Evolutionary robotics with on-line self-
organization and behavioral fitness. Neural Networks, 13:431-443, 2000.

D. Floreano and J. Urzelai. Neural morphogenesis, synaptic plasticity, and
evolution. Theory in Biosciences, 120:225-240, 2001.

A.L. Nelson, E. Grant, J.M. Galeotti, and S. Rhody. Maze exploration be-
haviors using an integrated evolutionary robotics environment. Robotics and
autonomous systems, 46:179-173, 2004.

S. Nolfi. Evolving robots able to self-localize in the environment: The im-
portance of viewing cognition as the result of processes occurring at different
time scales. Connection Science, 14:3:231-244, 2002.

S. Nolfi. Power and limits of reactive agents. Neurocomputing, 49:119-145,
2002.

S. Perretta and J.C. Gallagher. A general purpose java mobile robot simulator
for artificial intelligence research and education. In Proceedings of the 13th
Midwest Artificial Intelligence and Cognitive Science Conference (MAICS-
2002), 2002.

E. Tuci and M. Quinn. Behavioural plasticity in autonomous agents: a com-
parison between two types of controller. In Proceedings of The Second Euro-
pean Workshop on Evolutionary Robotics EvoROB2003, 2003.

E. Tuci, V. Trianni, and M. Dorigo. “feeling” the flow of time through sensory-
motor coordination. Connection science, 16(4):301-324, 2004.

J. Urzelai and D. Floreano. Evolution of adaptive synpases: Robots with fast
adaptive behavior in new environments. Evolutionary Computation, 9(4):495—

524, 2001.

