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Abstract

The appearance variation cue captures the variation in texture in a
single image. Its use for obstacle avoidance is based on the assumption
that there is less such variation when the camera is close to an obstacle.
For videos of approaching frontal obstacles, it is demonstrated that
combining the cue with optic flow leads to better performance than
using either cue alone. In addition, the cue is successfully used to
control the 16-gram flapping wing MAV DelFly II.

1 Introduction

Autonomous flight of biologically inspired flapping wing Micro Air Vehicles
(MAVs) is a largely uncharted area of research. The design and construction
of flapping wing MAVs is still a subject of study, cf. [3], and only a few
flapping wing MAVs exist that can carry a payload such as a camera onboard
[1, 13, 5]. Therefore, studies on controlling flapping wing MAVs mostly focus
on the use of external cameras [10].
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In fact, the light weight and limited energy supply of flapping wing MAVs
prevent the imitation of successes in autonomous flight with quad rotors
using Simultaneous Localization And Mapping (SLAM) [4, 17, 26]. These
successes rely on miniaturized laser range finders with a weight and energy
consumption largely exceeding the payload capabilities of a flapping wing
MAV such as the DelFly II (see Fig. 1).

In this article we focus on using onboard images of a flapping wing MAV
for the avoidance of large frontal obstacles in indoor environments. At the
moment, there are two main approaches for achieving indoor flight with
monocular vision. The first approach is visual SLAM, in which the state
of the MAV (3D position and attitude) is estimated by ‘matching’ camera
images to known locations in a 3D-model of the environment [12, 2, 9, 7].
This approach attempts to tackle both obstacle avoidance and navigation in
the same time. However, the algorithms still have problems with drift [7]
and are computationally expensive.

The second approach is a bio-inspired approach that is computationally
more efficient. Typically a state estimate is abandoned altogether and the
MAV directly responds to the incoming visual inputs [6, 22]. Generally,
optic flow is used [19, 24, 18], since it is known to play an important role
in insect flight [16, 11]. The flow of image points away from the Focus of
Expansion (FoE) can be used for estimating the time-to-impact to an obstacle
(cf. [27]). The limitations of this strategy include its dependence on texture
in the environment and the reliance on accurate optic flow measurements
(especially close to the FoE).

Figure 1: The 16-gram, 28 cm wing span flapping wing MAV DelFly II during
an obstacle avoidance experiment with monocular vision. The inset shows
the top of the DelFly’s body with its electronic components.
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Unfortunately, the images made with current state-of-the-art flapping
wing MAVs are rather degraded, rendering optic flow measurements quite
noisy. In particular, the flapping movements in combination with the line-
by-line recording of the video images can lead to considerable image defor-
mations. Fig. 2 shows two subsequent images made with the camera onboard
the DelFly II. These images are particularly affected by the flapping move-
ments: the (straight) edge of the closet in the center of the image is curved to
the right in the first image and curved to the left in the second image. As a
consequence of these unpredictable deformations, images often deviate from
the linear camera model assumed by optic flow algorithms. The poor quality
of the images and the reliance of optic flow on texture lead to a necessity for
complementing optic flow with other visual cues.

Figure 2: Two subsequent images in a video made onboard the DelFly II
with deformations caused by the combination of the flapping frequency of
the DelFly and the line-by-line recording of the camera.

The main contribution of this article is the investigation of a novel visual
cue for obstacle detection. The cue captures the variation in texture in a
single image, and is based on the assumption that there is less such variation
when the camera is close to an obstacle. The appearance variation cue is
a valuable complement to optic flow for autonomous obstacle avoidance in
indoor environments.

The remainder of the article is organized as follows. In Section 2, we
investigate the appearance variation cue. In Section 3 it is shown that the
novel cue is complementary to the time-to-impact determined by optic flow.
In Section 4, the DelFly II autonomously avoids obstacles using the appear-
ance cue and optic flow. Finally, we draw conclusions in Section 5.
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2 Appearance Variation as a Cue for Obsta-

cle Proximity

Robotics research on monocular vision has mainly focused on apparent mo-
tion and perspective cues for automatically determining distances to objects
in a robot’s environment. However, it is well-known (cf. [20]) that humans
use various other, complementary monocular vision cues to this end, includ-
ing: occlusion, image size of familiar objects, aerial perspective, lens acco-
modation, blur, and texture gradient. The novel cue for estimating obstacle
proximity introduced here is termed the appearance variation cue. When an
observer approaches an object, there are two concurrent effects:

1. The image size of the object increases in the image, while other objects
go out of view.

2. The detailed texture of the object in view becomes more and more
visible.

The main assumption underlying the novel cue is that the variation in ap-
pearance of many different objects in view is larger than that of the detailed
texture of one object alone. In other words, it is assumed that in general the
first effect decreases the appearance variation more than the second effect
increases it.

The appearance variation cue depends on the distance and on the textures
of the objects in view. We expect the cue to be complementary to optic flow,
since (i) it is fit for dealing with the absence of texture, a fail-case for optic
flow, (ii) it directly depends on the distance and does not require motion of
the observer, and (iii) it does not require accurate, sub-pixel measurements
in the image, which can make it more robust to noise. The complementarity
is expected to be mutual: if the cue’s main assumption is invalid, this implies
that there are different textures in view, which is beneficial for determining
optic flow. The verification of the expected complementarity between the
two cues is performed in the Section 3.2. In the remainder of this section, we
verify whether the appearance variation indeed decreases towards impact.

2.1 Measuring appearance variation

For measuring the appearance variation, in this study the term appearance
is interpreted as textures. One could also take colors into consideration,
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but this is left to future work. The approach to estimating the variation of
texture is to first estimate a probability distribution p of different textures
in the image. Subsequently, the Shannon entropy H [25] of the estimated
probability distribution is calculated.

For automatically determining the texture distribution, the texton method
[28] is used. This method evaluates texture on the basis of small local image
samples and was shown to outperform computationally more intensive filter-
ing methods (e.g., Gabor filters) on a texture classification task. Below, we
describe the implementation of the texton method in our experiments.

The texton method starts with the formation of a dictionary of n textons1.
To this end, small image samples of size w×h pixels are extracted from a set
of images of size W ×H . The samples are clustered by means of a Kohonen
network [21].

After learning the dictionary, the texton method evaluates texture by
estimating the probability distribution of textons in the image. s image
samples are extracted from the image to build a histogram g with n bins.
For each sample, the closest texton i in the dictionary is determined (Eu-
clidian distance), and the corresponding bin in the histogram gi is incre-
mented. Normalizing g results in a maximum likelihood estimate p̂ of the
texton distribution in the image, with p̂i = gi/s. This estimate is then
inserted into the formula of entropy to determine the texture variation:
H(p̂) = −

∑n

i=1
p̂ilog2(p̂i). A high entropy corresponds to a high variation in

appearance, while a low entropy corresponds to the contrary.
One aspect of the method is worth mentioning. Computer vision appli-

cations typically extract all possible local samples from the image, making
p̂ equal to p. We first follow this convention, but for the classification and
robotic experiments (Section 3 and 4) a number of samples s ≪ WH is ex-
tracted for computational efficiency. The higher efficiency comes at the cost
of a slightly lower accuracy (cf. [14]).

2.2 Experimental setup

Three types of experiments are performed, all with a focus on obstacle dis-
tances typical for flying ranges of MAVs in indoor environments (3m - 0m).
First, we determine the appearance variation for a small set of 10 obsta-
cle approach sequences made by holding an analog wireless camera in hand.

1All parameter settings will be mentioned in Subsection 2.2.
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Each approach starts from a distance of 3 meters from a wall or other large
obstacle, which is approached with an approximately constant pace. All im-
ages are resized to 160 × 120 pixels. Second, a larger set of 65 approach
sequences is studied, captured in the same manner but with the camera of
a mobile phone. The top row of Fig. 3 shows three shots from one of the
sequences with the mobile phone. Third, to study an even larger number of
approach sequences, we also simulate approach sequences by zooming in on
digital photographs. Of course, the disadvantages of simulated approaches
are the absence of (a) three-dimensional visual effects and (b) realistic noise
conditions.

Figure 3: Example images from an actual approach sequence captured with
a mobile phone (top) and a simulated approach sequence (bottom).

For the simulated approaches, a set of 62 photographs was taken in inside
environments at a distance of 3 meters from a wall or other large obstacle.
All photographs have a dimension of 3072 × 2304 pixels. The simulated
camera images have a dimension of 160 × 120 pixels. At the start of the
approach sequence the camera captures an area of 2000× 1500 pixels in the
original image, which is resized to the virtual camera dimension with bicubic
sampling. At the end of the approach, the captured area in the original image
equals 160×120 pixels. Digitally zooming in even further would always result
in a lower appearance variation, since no new details can come into sight.
Each sequence comprises 90 frames during which the width and height of
the captured image area decreased linearly. The bottom row of Fig. 3 shows
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three images from one of the simulated sequences.
The settings of the Texton Method Gray (TMG) are as follows. The size

of the image patches is w×h = 5×5, and it extracts all possible samples in the
gray-scale image, s = 155× 115 = 17825. The dictionary has n = 30 textons
and is learned on a separate set of images not belonging to the approach
sequences.

2.3 Results

Fig. 4 shows the TMG’s entropy values over time (thin gray lines) for the
10 wireless video sequences. Time is represented on the x-axis, the entropy
on the y-axis. It also shows linear fits (thick red lines) minimizing the mean
square error to the data points.

As can be seen in Fig. 4, the slopes of the entropy over time are all
negative for the wireless video sequences. In order to get an idea of how often
the entropy decreases towards impact, the proportions of negative slopes are
determined for the other video sets as well. For the larger video set of 65
sequences made with the mobile phone 80% of the slopes is negative. For the
310 simulated sequences 90% of the slopes is negative. The large proportions
of negative slopes imply that the appearance variation generally decreases
towards impact.
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Figure 4: The entropy of TMG over time (light gray lines) and corresponding
linear fits (thick red lines). The entropy decreases towards impact.

In some sequences the entropy increases over time. Investigation of these
sequences showed that they resemble the one in the bottom row of Fig. 3.
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The simulated camera approaches a book shelf that has objects in it with
different, highly detailed textures. The detailed texture leads to an increasing
entropy as it comes into sight. The existence of sequences in which the
entropy increases and the different offsets of the entropy (see Fig. 4) suggest
that the sole use of the appearance variation cue will not lead to perfect
obstacle avoidance.

3 Complementarity with Optic Flow

In this section, we investigate a task in which the appearance variation cue
and / or the optic flow are used to classify whether the time-to-impact τ is
larger or smaller than a desired detection time τ ∗. In Subsection 3.1 the optic
flow method is explained. In Subsection 3.2 the classification performances
of the methods are evaluated.

3.1 Optic Flow for Calculating Time-To-Impact

The optic flow algorithm’s implementation consists of two parts: (1) finding
and tracking feature points to determine several optic flow vectors between
two images, and (2) determining τ on the basis of the vectors.

For the first part, the method of Lucas-Kanade [23, 8] from the openCV
library is used (http://www.opencv.org/). The second part is performed as
follows. It is assumed that the camera is moving straight towards a flat sur-
face, while the camera possibly undergoes pitch and yaw changes. The Focus
of Expansion (FoE) is estimated with the least-squares method described in
[27]. Subsequently, the optic flow vectors are used to determine the distance
from the old location (xt, yt) and the new location (xt+1, yt+1) to the FoE
(xe, ye); de,t and de,t+1 respectively. The difference in distance to the FoE is
∆de,t. Each optic flow vector leads to one estimate τ̂ :

τ̂ = de,t/∆de,t (1)

Since it is assumed that there is one flat surface and the optic flow vectors
are noisy, the final estimate τOF is taken to be the median of the resulting
τ̂ -distribution. The uncertainty of τOF can be captured with the standard
deviation of the τ̂ -distribution (σOF ). Despite the strong assumptions, this
straightforward method works rather well in practice.
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3.2 Classification Performance

After determining TMG’s entropy, τOF , and σOF on the set of videos, we
investigate the classification performances of different combinations of meth-
ods. The task is to classify a time step t as positive when τ ≤ τ ∗. The
following logical expressions are used for classification: ‘τOF < ϑ1’, ‘TMG
< ϑ1’, ‘τOF < ϑ1 and σOF < ϑ2’, ‘τOF < ϑ1 or TMG < ϑ2’, and ‘(τOF < ϑ1
and σOF < ϑ2) or TMG < ϑ3’. The rationale behind this last expression
is that the optic flow estimate should only be trusted when it is accurate
enough, with the entropy of TMG to ensure detection if this is not the case.
For brevity, the thresholds ϑi will be henceforth omitted.

By varying the thresholds in the above expressions, a Receiver Operator
Characteristic (ROC) curve [15] can be made that represents the trade-off
between True Positives (TPs, detections when τ is indeed smaller than τ ∗)
and False Positives (FPs, detections when τ is actually larger than τ ∗).
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Figure 5: ROC-curves of different combinations of variables, τ ∗ = 11

3
s., for

the video sequences made with the flying DelFly II.
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Table 1: AUC for combinations of τOF , σOF , and TMG. Bold indicates the highest
AUC. DelFly II sequences.

τ
∗

τOF TMG τOF andσOF τOF or TMG (τOF andσOF ) or TMG

1

3
0.787 0.844 0.722 0.846 0.824

2

3
0.727 0.848 0.713 0.831 0.810

1 0.775 0.934 0.753 0.922 0.905

1 1

3
0.726 0.916 0.709 0.910 0.906

1 2

3
0.682 0.853 0.672 0.860 0.850

Fig. 5 shows the ROC-curves for 19 video sequences recorded with the
camera onboard the flapping wing MAV DelFly II. It includes the methods
‘τOF ’ (blue solid), ‘TMG’ (green thin solid), ‘τOF and σOF ’ (red dash-dotted),
‘τOF or TMG’ (yellow dashed), and ‘(τOF and σOF ) or TMG’ (purple dotted)
for τ ∗ = 11

3
s. The x- and y-axis represent the FP ratio and TP ratio,

respectively. The higher the curve, the better.

The results show that complementing optic flow measures with the ap-
pearance variation cue leads to improved collision detections. TMG has the
highest TP ratios for FP ratios smaller than ∼ 0.3. For higher FP ratios, the
combination of TMG with σOF and τOF gives the best results. Optic flow
measures alone do not lead to acceptable performances, because the DelFly
images are rather degraded and distorted.

The findings above are further confirmed by investigating the quality of
the classifier by means of the Area Under the Curve (AUC). Table 1 shows the
AUC-values for the different methods for different τ ∗. A bold setting indicates
the best method. The optic flow estimate τOF is constantly outperformed
by TMG on the DelFly images. The best performances are either obtained
by the combination of τOF and TMG, or by TMG alone. Importantly, these
results have been obtained while TMG only extracted s = 100 samples from
each image - a number low enough to ensure real-time operation.

On the other (less degraded) image sets such as the hand-held video
sequences, optic flow performs on a par with TMG (see Table 2). On those
sequences, the best results are almost always obtained by a combination of
the two methods.
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Table 2: AUC for combinations of τOF , σOF , and TMG. Bold indicates the highest
AUC. Hand-made sequences.

τ
∗

τOF TMG τOF and σOF τOF or TMG (τOF and σOF ) or TMG

1

3
0.836 0.881 0.769 0.876 0.897

2

3
0.893 0.976 0.848 0.963 0.877

1 0.926 0.927 0.899 0.942 0.936

1 1

3
0.908 0.819 0.896 0.867 0.944

1 2

3
0.887 0.733 0.880 0.769 0.974

4 Obstacle Avoidance Experiment

The final experiment involves the use of both the appearance variation cue
and optic flow to control the flapping wing MAV DelFly II [13] in order
to verify whether the detection performance is good enough for successful
obstacle avoidance.

The DelFly II cannot yet carry its own processing onboard. The images
are made with a forward-looking, onboard MO-S588 1/4” CMOS NTSC color
camera (f = 3.1mm, with FOVh = 61.3◦, FOVv = 46◦). They are sent to
a ground station for processing. While the vision algorithms are currently
running offboard, their efficiency remains of uttermost importance in order
to control small MAVs with fast dynamics and to have a chance of being
implemented onboard in the near future. The video frame rate is 30Hz. The
frames are down-sized to 160× 120 images and processed by both the optic
flow algorithm running at 30Hz and the texton method running at 13Hz
(n = 30 and s = 100). The execution frequencies have been measured on
a dual-core 2.26GHz laptop with all ground station software running at the
same time.

While the height of the DelFly is controlled by a human pilot, the rudder
is entirely controlled by the ground station. The algorithm for the rudder
control is illustrated with a flow-chart in Fig. 6. In case of a collision de-
tection, the control of the rudder is straightforward: it performs a sequence
of open loop commands for ∼ 1.5 seconds. The sequence is always executed
fully before new commands are allowed. When not executing a turn, a col-
lision is detected if (τOF >= 0 and τOF < 2 and σOF < 2) or TMG < 2.2.
In order to prevent the DelFly from getting into a downward spiral, colli-
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sion detections only result in turning behavior if the absolute yaw rate (|ψ̇|)
is lower than 12◦/sec. The yaw rate is estimated by means of the median
horizontal flow fx as follows: ψ̇ = (fx/W )FOVh.

Figure 6: Flow chart of the obstacle avoidance algorithm controlling the
DelFly II during the avoidance experiments.

The DelFly successfully avoided obstacles in two different office spaces.
Fig. 7 shows the trajectory of an experiment in the office space shown in Fig.
1, from its launch (X) to when it is caught (O). The top part of the figure
shows the DelFly’s x, y-position during the flight, obtained from two external
cameras. The borders indicate the large obstacles such as walls in the room,
and delimit the flyable area. The trajectory shows that the DelFly detects
all obstacles on time, while not performing an excessive number of avoidance
maneuvers. Not every open loop turn has an equal effect. One factor playing
a role is that subsequent open loop turns tend to result in sharper turns, but
external factors such as drafts also have a big influence on the dynamics of
the 16-gram DelFly.

The middle plot shows the variables computed on the basis of the onboard
images during the entire experiment. The x-axis shows the time in seconds.
The y-axis shows the values of the individual variables relevant to obstacle
avoidance: τOF (dark blue solid), σOF (red dash dotted), TMG (green solid),
and the absoluate yaw rate |ψ̇| scaled by a factor 0.1 for visualization purposes
(light blue dashed). The corresponding thresholds are shown with dotted
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lines in the same colors. Finally, the plot also shows the command c sent
to the rudder (purple solid), for flying straight (c = 0) or making a turn
(c = −0.8). Colored crosses in the figure show when the variables satisfy
their conditions for an obstacle detection. The black crosses at y = 0 shown
when a collision is detected and |ψ̇| allows for a new open loop turn.

The bottom plot focuses on a time interval in which the DelFly per-
forms two subsequent open loop turns. The first turn is the consequence
of a false positive detection by the optic flow measurements. The turn di-
rects the DelFly towards a wall, necessitating collision avoidance. The wall
has little texture and is first detected on the basis of the appearance varia-
tion cue, leading to a timely turn away from the wall. The onboard image
at the moment of detection is shown in the figure with a yellow border.
Videos and additional material concerning the experiments are available at
http://www.bene-guido.eu/guido/.

5 Conclusions

Our investigation shows that for indoor environments the appearance varia-
tion generally decreases when approaching an obstacle. Still, it can increase
when the obstacle has a detailed texture, implying that the cue cannot be
used alone to detect all obstacles. Our main conclusion is that the appearance
variation cue is a useful complement to optic flow: the AUC of a classifier
using both cues is higher than that of either cue alone. The performance
gain is larger for more degraded images, making the cue a valuable asset for
autonomous obstacle avoidance of light-weight flapping wing MAVs. Future
work includes onboard processing and autonomous altitude control.
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Figure 7: Top: trajectory of the DelFly during one of the experiments. Mid-
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