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Abstract

Performance on visual tasks such as classification can be enhanced by
employing active vision systems. Such systems do not passively receive
observations, but have to some extent control over the observations they
perceive. There are two general approaches to active vision. The first
approach to active vision is a probabilistic approach, in which reducing
uncertainty on a part of the world state is the central goal. This uncer-
tainty is modelled by a belief state. The second approach to active vision
is a behavioural approach, in which successful behaviour is the central
goal. For both approaches, there have been considerable research efforts
into designing and studying various active vision models. However, it is
not clear how the different existing active vision models relate to each
other, and what their relative advantages are. In this report, we identify
three main types of active vision models in the probabilistic approach and
describe them in a common formal framework. The first type of model
selects actions on the basis of the mutual information between actions
and classes, and is referred to as the Mutual Information model (MI).
The second type of model learns an action policy on the basis of entropy
loss in the belief state, the Entropy Loss model (EL). The third type of
model bases its action selection on the mode of the belief state, the Mode
of Belief state model (MB). In addition, we introduce a fourth type of
active vision model that is based on the behavioural approach to active
vision, the BeHavioural model (BH). Model BH is identical to EL, except
that it learns an action policy that achieves a high performance rather
than one that achieves entropy loss in the belief state. We compare the
four active vision models empirically on a view-based three-dimensional
object classification task. The experimental results give insight into the
differences between the models. The overall result is that BH generally
outperforms the models EL and MB of the probabilistic approach. In
addition, within the probabilistic approach model MI has the best classi-
fication performance. Besides revealing performance differences between
the active vision models, the experimental results also illustrate proper-
ties of the relation between the usefulness of active vision, the number of
objects involved in the classification task, and the richness of the visual
observations of the models.
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1 Introduction

Performance on visual tasks such as classification can be enhanced by employing
active vision systems. Such systems do not passively receive observations, but
have to some extent control over the observations they perceive.

There are two general approaches to active vision. The first approach to
active vision is a probabilistic approach, in which reducing uncertainty on a
part of the world state is the central goal (e.g., [10]). For example, the model
might have to determine the true class of a certain object, where it starts with
uncertainty on the class of the current instance. This uncertainty is modelled by
a belief state. A belief state is a probability distribution over all possible classes.
The model selects actions so that the resulting observations allow a reduction of
class uncertainty. Since entropy is a measure of uncertainty, a typical method
of action selection is to select the action resulting in the minimal entropy of
the belief state (e.g., [1]). In the probabilistic approach to active vision, we
discern different types of active vision models that differ in their action selection
strategies and sometimes also in their belief state updates. Although much
research has been devoted to designing and studying these types of active vision
models [1, 3, 10, 16], so far most of the models have only been compared with
a random action strategy.

The second approach to active vision is a behavioural approach, in which
successful behaviour is the central goal (e.g., [6, 12]). This approach can be
applied to a more general type of problem. For example, it can be applied to
behavioural classification tasks in which the model has no belief state regarding
the class, or even no memory of past observations [7, 12]. An example of a
behavioural task is the task in [7], in which an active vision model has to catch
small blocks and avoid large blocks. The behavioural approach does not neces-
sarily strive for reducing entropy maximally. The only goal is to select actions
and observations as to maximise the performance. Behavioural models of active
vision have not yet been compared to probabilistic models of active vision.

It is unclear how different types of active vision models relate to each other,
and what the advantages of those models are with respect to each other. In
this report, we want to clarify this matter by comparing different active vision
models. We identify three main types of probabilistic active vision models and
describe them in a common formal framework. In addition, we introduce a
fourth type of active vision model that is based on the behavioural approach to
active vision. Subsequently, we compare the four active vision models empiri-
cally on a classification task of 3-D objects. In our comparison of the models,
we focus on the differences in the action selection strategies of the four active
vision models. Therefore, we provide all active vision models with the same
belief state update.

The remainder of this report is organised as follows. In Section 2, we intro-
duce the notation used throughout the report. Then, in Section 3 we explain
the belief state update that is used by all active vision models described in this
report. We describe the active vision models in Section 4. In Section 5 we
discuss the experimental setup with which we compare the models. Then, in
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Section 6 we show the results of these experiments. In Section 7 we perform an
analysis that provides an explanation for some of the experimental results. We
discuss our experiments and draw our conclusions in Section 8.

2 Notation

Throughout the report we will use the following notation. With p(X) we indicate
a probability distribution over all elements of the set X. Where capital letters
represent sets, small letters represent elements. Therefore p(x) is the probability
of a specific element x ∈ X. Since we discuss all active vision models in the
context of a classification task, we use the following variables: O is the set of
all possible observations, C the set of all possible classes, and A the set of all
possible actions. A specific observation, class, and action are denoted by o, c,
and a respectively, where o ∈ O, c ∈ C, and a ∈ A. In our discussion of the
models, we will assume the variables O, C, and A to be discrete, finite sets, but
all models can be applied to continuous variables as well (see, e.g., [10]). The
active vision process extends itself over multiple discrete time steps. The time
step before the model takes an action, or performs an observation, is indicated
with 0. A possible maximum number of time steps is indicated with t. The
current time step is represented by i. A bold letter with subscript j indicates a
sequence of length j. In this report typically the subscript i is used, where for
example oi = 〈o1, o2, . . . , oi〉 is the sequence of observations of the first i time
steps. Similarly, the sequence of corresponding actions is ai = 〈a1, a2, . . . , ai〉.

The belief state at a time step i represents the probabilities of the classes,
given the past observations and actions: p(C | oi−1,ai−1). The probability
of a particular class c at time step i is indicated with p(c | oi−1,ai−1). On
the basis of the current belief state p(C | oi−1,ai−1), the probabilistic active
vision models determine an action for the current time step, ai, which results
in an observation oi. The action and observation allow the models to calculate
the belief state for the next time step, p(C | oi,ai). At time step i = 1, the
belief state is equal to the prior distribution, i.e., p(C | o0,a0) = p(C), since
o0 = a0 = 〈〉.

3 Belief State Update

Since we want to focus on the differences in action selection strategies between
the different types of active vision models, we provide all models with the same
belief state update rule. In this section, we explain how all active vision models
update their belief state in our experiments. We place our explanation of the
belief state update in the context of a classification task.

The recursive belief state update presented here, was introduced in [9, 10].
We select this particular belief state update, since it can be employed by all four
active vision models that we introduce in Section 4. In the following, we derive
the recursive update for the belief state, as used in [10]. The belief state is the

3



posterior class probability distribution, which we can rewrite using Bayes’ rule
as follows.

p(C | oi,ai) =
p(oi | C,oi−1,ai)p(C | oi−1,ai)

p(oi | oi−1,ai)
(1)

In [10] the classification task concerns the classification of different 3-D ob-
jects. Each action of the active vision model corresponds to an angle from which
an object can be viewed. Since in their experimental setup any angle can be
reached at any time step, it is assumed that an observation is only determined
by the class and the action, and not by the past observations and actions:

p(oi | C,oi−1,ai) = p(oi | C, ai) (2)

This assumption can be used to rewrite the formula of the posterior class
probability distribution as follows.

p(C | oi,ai) =
p(oi | C, ai)p(C | oi−1,ai)

p(oi | oi−1,ai)
(3)

The formula can further be simplified by using the fact that p(C | oi−1,ai) =
p(C | oi−1,ai−1), since action ai does not contain any information on the class if
oi is unknown. In consequence, the denominator p(oi | oi−1,ai) can be rewritten
as follows.

p(oi | oi−1,ai) = (4)

∑

c∈C

p(c | oi−1,ai)p(oi | c,oi−1,ai) =

∑

c∈C

p(c | oi−1,ai−1)p(oi | c,oi−1,ai) =

∑

c∈C

p(c | oi−1,ai−1)p(oi | c, ai) (5)

The rewritten formula of the posterior class probability distribution becomes:

p(C | oi,ai) =
p(oi | C, ai)p(C | oi−1,ai−1)∑
c∈C p(c | oi−1,ai−1)p(oi | c, ai)

(6)

This formula can be used as a recursive belief state update. Namely, to
calculate Equation 6, we only need the old belief state and the observation
probability distributions for all classes and actions. The observation probability
distributions p(O | c, a) for all classes and actions have to be determined before
application of the active vision model. The subscript i is dropped here, since
it is assumed that these observation probability distributions are static. In this
report, all active vision models employ the belief state update of Equation 6.
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4 Active Vision Models

In this section, we introduce the four active vision models that we compare in
this report. The first three active vision models are based on the probabilistic
approach to active vision. As mentioned in the introduction, there are several
different active vision models in the probabilistic approach [1, 9, 10, 14, 16].
However, we can discern three main model types, according to how they select
actions. The first type of model calculates at every time step the expected use-
fulness of all actions to select one of them (see, e.g., [3, 4, 9, 10, 11]). This type
of model determines the expected usefulness of an action by generating obser-
vations according to the observation probability distribution that is associated
with that action. These generated observations are used to perform tentative
belief state updates. The model selects the action whose tentative belief state
updates give the best result. In this report, we implement the active vision
model of the first type on the basis of [9, 10], in which the action is selected
to maximise the mutual information between observations and classes. For this
reason, we refer to this model as ‘MI’ (Section 4.1). This type of model calcu-
lates the mutual information of all possible actions, before selecting one of them.
On the contrary, the second type of model (see, e.g., [8, 16]) learns an action
selection policy. This policy maps the current belief state to an action. The goal
in learning the policy is entropy loss in the belief state. For this reason, we refer
to this method as ‘EL’ (Section 4.2). The third type of model ranks all actions
on forehand. These actions are ranked according to the uncertainty reduction
in the belief state, assuming that the object belongs to the most probable class
(see e.g., [1, 14, 19]). Since the most probable class corresponds to the mode of
the belief state, we refer to this model as ‘MB’ (Section 4.3). We also incorpo-
rate a behavioural model in our comparison. As mentioned in the introduction,
behavioural models can have an implicit belief state, or no belief state at all.
However, in our comparison we want to focus on the main aspect of behavioural
models: that their actions are directed towards successful behaviour. Therefore,
we introduce a fourth active vision model that does have an explicit belief state,
but that takes actions as to achieve a high classification performance. In partic-
ular, the fourth model is equal to EL, except that this model’s learning goal is
to maximise classification performance instead of reducing entropy in the belief
state. Since it is the only model that is based on the behavioural approach,
we refer to this fourth type of model as ‘BH’ (Section 4.4). In the rest of this
section, we first present the above-described four active vision models. Then, in
Section 4.5, we introduce two benchmark models: an active vision model that
takes random actions, ‘RA’, and a passive vision model, ‘PA’.

4.1 Action Selection Based on Mutual Information (MI)

Several probabilistic active vision models evaluate all possible actions, before
selecting one action for actual execution [3, 4, 9, 10, 11]. The first type of model
we discuss, introduced in [10], calculates the mutual information I between
observations O and classes C for each action a:
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I(C; O | a) = H(C | a)−H(C | O, a) = H(O | a)−H(O | C, a) (7)

= H(O | a)−
∑

c∈C

p(c | a)H(O | c, a)

= −
∑

o∈O

p(o | a)log(p(o | a)) +
∑

c∈C

p(c | a)
∑

o∈O

p(o | c, a)log(p(o | c, a))

= −
∑

c∈C

∑

o∈O

p(o, c | a)log(p(o | a)) +
∑

c∈C

∑

o∈O

p(o, c | a)log(p(o | c, a))

=
∑

c∈C

∑

o∈O

p(o, c | a)log(
p(o | c, a)
p(o | a)

)

=
∑

c∈C

∑

o∈O

p(c | a)p(o | c, a)log(
p(o | c, a)
p(o | a)

) (8)

In the context of our classification task, we want to maximise the mutual
information between O and C, by selecting an action ai:

ai = argmaxaI(C;O | oi−1,ai−1, a) (9)

Where, according to Equation 8:

I(C; O | oi−1,ai−1, a) = (10)

∑

c∈C

∑

o∈O

p(c | oi−1,ai−1, a)p(o | c, a)log(
p(o | c, a)∑

c∈C p(c | oi−1,ai−1)p(o | c, a)
)

Note that p(c | oi−1,ai−1, a) = p(c | oi−1,ai−1), since the probabilities of
C are independent of the action that has not yet been executed. Equation 10
shows that the mutual information for an action can be calculated on the basis
of the belief state and the observation probability distributions. This active
vision model does not need any training time other than the time to learn the
observation probability distributions p(O | c, a). The execution time of the
model depends on both the number of objects and the number of actions. As
a consequence, the model takes an increasing amount of execution time for
increasing object subset sizes.
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4.2 Learning an Action Policy for Entropy Loss (EL)

The second type of active vision model, EL, learns an action selection policy
(e.g., [16]). For example, a policy Π can be learned that maps the belief state
to an action, Π : p(C | oi,ai) → A. The mapping is learned with reinforcement
learning [20], with the entropy reduction in the belief state as the reinforce-
ment signal. In this report we optimise the mapping Π with an evolutionary
algorithm [2] instead of with reinforcement learning. We implement Π with a
neural network, whose weights form the genome of the policy. The fitness fit
of policies in the population during evolution is defined as the expected total
entropy reduction in the belief state over all t time steps:

fit(Π) = E[
t∑

i=1

(H(C | oi−1,ai−1)−H(C | oi,ai))] = E[H(C)−H(C | ot,at)]

(11)
We approximate the expected total entropy reduction by executing a policy

Π on all objects in the selected object set and averaging over the measured
total entropy reduction. A key property of EL is that its action policy allows
very quick action selection at execution time, because it allows the immediate
selection of one action without evaluating all actions. However, this quick ex-
ecution time comes at the cost of a long training time. Also note that where
MI always selects the action that results in the largest immediate reduction of
entropy, this is not necessarily the case for EL. Therefore, EL has the ability to
find non-greedy action selection strategies.

4.3 Action Selection for Most Probable Class (MB)

The third type of active vision model, MB, bases its action selection on the most
probable class, i.e., the mode of the belief state. An example of this strategy is
[1], in which for every class and every action, the expected entropy of the belief
state is estimated before execution. The actions a ∈ A are ranked for each class
k ∈ C according to the expected entropy reduction, given a uniform belief state:

value(ak) = E[H(C)−H(C | a) | k] (12)

= H(C)− E[H(C | a) | k] (13)

We calculate the expected entropy in Equation 13 by sampling repeatedly an
observation o ∈ O from class k, according to p(O | k, a), resulting in observations
oi(a, k), i = 1, 2, . . . ,m. Then we use the following approximation:

E[H(C | a) | k] ≈ 1
m

m∑

i=1

H(C | a, oi(a, k)) (14)

During execution, the model receives an observation, updates the belief state,
and selects the best action for the most probable class. It selects the action with
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the highest value that has not been performed before. Compared to EL, MB
has a short training time, since it calculates only once for every action-class pair
how good the action is. Compared to MI it has a short execution time, since the
ranking of actions resulting from the training procedure allows a fast execution
time. However, the advantages concerning training and execution time may
come at the cost of a lower performance attained on the task.

4.4 Learning an Action Policy for Performance (BH)

The fourth active vision model, BH, is inspired on the behavioural approach to
active vision. The model is equal to the second active vision model that learns
an action policy Π that maps the belief state to an action, Π : p(C | oi,ai) → A.
The only difference with EL is that we use a different fitness function for this
model:

fit(Π) =
k

n
(15)

Where k is the number of correctly classified objects, in a trial in which the
model had to classify n objects (n ≥ k). The reason that we state that this
model belongs to the behavioural approach to active vision, is that the central
goal of the model’s action selection is performance instead of entropy reduction.
Again, we implement the action policy Π with a feedforward neural network.
As EL, it has a long training time and a short execution time.

4.5 Benchmark Models

In each experiment, we compare the active vision models with two additional
models that provide benchmark performances for the experiment. The first
additional model is an active vision model that selects actions at random. We
refer to this model as ‘RA’. It provides a bottom performance for the active
vision models.

The second additional model represents a passive vision model. This is a
model that takes one random action and immediately classifies the object with
the help of the observation probability distribution. It selects the class that
has the highest probability to generate the observation o, given its randomly
selected a. We refer to this model as ‘PA’, which stands for passive.

5 Setup Empirical Comparison

Most of the probabilistic active vision models have been introduced in the con-
text of a classification task of 3-D objects [1, 3, 10, 16]. Therefore, for our
empirical comparison of the active vision models, we also employ such a task.
For the experiments, we use the ALOI-data set [13] that consists of 1000 objects
that have been placed on a turn-table and have been photographed from 72 an-
gles that are each 5◦ apart. The resulting images are gray-value images. We use
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the set of objects with the smallest image size (192× 144) for our experiments.
To ensure a fair comparison between the approaches, we divide the data set into
two subsets: a subset of 250 objects that is used to tune the parameters of the
various active vision models, and a subset of 750 objects that is used to do the
experimental comparison of all (tuned) active vision models.

Here we give an overview of the procedure of a single experimental run, that
we explain in more detail below. First, a subset of n objects is selected at random
from the current object set (tuning or comparison set) and the corresponding
images are loaded and resized to one fourth of their size with bicubic resampling.
Figure 1 shows an example subset of 25 objects. Following the experimental
setup in [18], we divide the images in a training set (images with angles divisible
by 5◦, excluding those divisible by 10◦) and a test set (remaining images). As in
[3, 10, 16], we apply Principal Component Analysis to the training images of the
n selected objects (Subsection 5.1). We use the extracted principal components
to estimate the probability distributions p(O | a, c) for all actions and classes
(Subsection 5.2). For the models EL, MB, and BH we use these probabilities
for training the action selection (Subsection 5.3). As noted in Section 4.1, MI
does not require training. For the action selection, we follow the setup in [10],
in which an action corresponds to selecting one of the angles from which the
object can be viewed. Finally, we apply the trained model to all object-images
in the test set, and measure its performance (Subsection 5.4).

Figure 1: Example set of objects for n = 25.

When an active vision model has to classify an object, it starts with a uniform
belief state. We perform two types of experiments. In the first type, the active
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vision model can determine the first angle itself. In the second type, the run
starts with an observation from a random angle, unknown to the active vision
model. In both types of experiments, the belief state is updated on the basis
of the first observation. As in [10], the active vision model continues selecting
angles until the confidence in one of the classes is higher than 90% (max (p(c)) ≥
0.90) or the number of observations is equal to 10. If the number of observations
is equal to 10, the class k with highest probability is selected: k = argmax cp(c |
oi,ai).

5.1 Observations

The observations for the classification task are based on Principal Component
Analysis (PCA, see e.g., [15]). We apply PCA to the training images in order
to map them to a lower-dimensional space that retains much of the original
data’s variance. Before applying PCA we transform each image to a vector
by concatenating the image’s rows of gray values. For finding the principal
components, we implemented the iterative version of simple PCA [17], since it
is fast and well-suited for large image sets. Figure 2 shows a visualisation of
the first five principal components of the object subset shown in Figure 1. To
obtain these visualisations, we have applied simple PCA to the training images
of all objects in the subset. Then, we scaled the values of the eigenvectors so
that all its values are in the range [0, 1]. In the visualisation of Figure 2, we have
retransformed the vectors to two-dimensional matrices and the rescaled values
represent light intensity, where 0 is black and 1 is white. The visualisation of
the first principal component shows that most variance of light intensity in the
example object subset is located in the middle of the image, i.e., the point around
which the objects turn. The visualisation of the second and third principal
components show a variation in the top and bottom of the objects. In the
experiments, after finding the principal components, we obtain an observation
o of an image by transforming the image to a vector and projecting it onto the
principal components.

Figure 2: Visualisation of the first five principal components of the object set
shown in Figure 1.

5.2 Observation Probability Distributions

In order to update the belief state, we need to estimate the probabilities p(O|A, C).
For simplicity, we assume, as in [3, 10, 14], that the observations O for a given
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action a and class c are Gaussian distributed in the space spanned by the prin-
cipal components: p(O|a, c) = N(µ,Σ), with µ and Σ dependent on a and c.
The covariance matrix Σ is assumed to be diagonal. The parameters of the
distribution are estimated for each combination of a and c with the help of the
training set. Since only one image is available per class and angle, we perturb
the images in order to obtain the observation probability distributions. This
perturbation takes into account that the photos in the test set belong to the
angles in between those of the training set. In particular, to sample an observa-
tion from class c and angle d◦, we ‘morph’ the image with either the image of
angle d + 10◦ or the image of angle d− 10◦. The morphed image vector vsample

is determined on the basis of a random number m ∈ [−0.5, 0.5] as follows.

vsample =
{

(1− |m|)vd + |m|vd+10 , if m > 0
(1− |m|)vd + |m|vd−10 , if m ≤ 0 (16)

Figure 3 shows three real images and two morphed images of a sneaker
viewed from angles d = 20, 30, and 40. The images indicated with m = −0.5
and m = 0.5 are morphed images of the image with d = 30.

d = 20 m = −0.5 d = 30 m = 0.5 d = 40

Figure 3: The left image is taken from angle d = 20, the middle image from
d = 30, and the right image from d = 40. The images indicated with m = −0.5
and m = 0.5 are morphed images.

5.3 Training the Active Vision Models

In this subsection, we discuss the training of the active vision models EL and
BH. As mentioned before, MI does not have a training procedure. We have fully
described the training procedure of MB in Section 4.3.

We use an evolutionary algorithm to train the active vision models EL and
BH. We start evolution by randomly initialising N different policies, N = 20.
Each policy Π : p(C | oi,ai) → A is implemented by a fully connected mul-
tilayer feedforward network, with weights in the range [-1, 1]. The number of
hidden neurons is half the number of inputs (classes), i.e., bn

2 c. The genome of
an individual policy is a vector of double values in the aforementioned range.
The neural network transforms the current belief state into outputs that rep-
resent the possible actions. Therefore, it has n input neurons, where n is the
number of objects under consideration, and it has 36 output neurons, i.e., the
number of training or test angles (possible actions). The model executes the
action corresponding to the output neuron with the highest activation value.
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Training observations are generated according to the learned Gaussian distribu-
tions that represent p(O|a, c), but we multiply the standard deviations of these
distributions by a constant factor β in order to obtain interesting training cases
that require actions. Figure 4 illustrates why we employ this factor β. The solid
and dotted line illustrate the observation probability distributions of two differ-
ent objects, projected on the first principal component. Clearly, if we sample
according to these probability distributions, each observation can be classified
correctly without the need for further actions. However, if we employ the factor
β, we obtain observations that are more interesting. For example, the model can
encounter observations that fall in between the probability distributions of the
two different objects. The dashed line in the figure illustrates the way in which
we sample observations for training. We set β to 4, on the basis of preliminary
experiments on the tuning set of objects.

−6 −4 −2 0 2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Value of o

p(
o)

σ

βσ

Figure 4: Illustration of the use of β. The solid and dotted line illustrate the
observation probability distributions for the same action of two different objects,
whose images are projected on the first principal component. The dashed line
illustrates the way in which we sample observations for training if the model
has to classify the object corresponding to the solid line, with β = 4.

To evaluate a policy, we apply it n times to the training set, so that it is
evaluated once for each object. For BH we define the fitness of a policy as the
proportion of correct classifications. For EL we define the fitness as the mean
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entropy-loss in the belief state. After all policies have been assigned a fitness,
the best 5 policies are selected to form the next generation of policies. Per
selected policy, we create 4 offspring by copying its genome 4 times. Then we
apply mutation to the genomes of the offspring, where every gene (weight of the
neural network) has a probability of pm of being mutated. In our experiments,
we set pm to 1

25 . We mutate a gene by assigning it a random number from the
interval [−1, 1]. This process of fitness evaluation, selection, and procreation,
continues for 2n generations. Preliminary experiments on the tuning set have
shown that this number of generations allows convergence of the evolutionary
algorithm. The best policy of the last generation is returned as the trained
policy. Since the outcome of training depends on the initial population, we
perform three evolutions and select the policy that obtained the highest fitness.
We evaluate this selected policy on the test set.

5.4 Testing the Active Vision Models

In total we perform fourteen experiments to compare the active vision models.
These experiments are different in the number of objects that have to be clas-
sified, in the number of principal components, and in whether the model can
determine the first viewing angle or not. Table 1 shows what experiments we
perform. PC stands for principal component(s), n is the object subset size. In
the experiments with a random first view angle, we employ two strategies to
cope with the first observation: a conservative and a confident strategy. These
strategies are further explained in Subsection 6.2.

Model Determines First View Angle
1 PC n = 25, 50, 75, 100
2 PC n = 25, 50, 75, 100

Random First View Angle
1 PC n = 25, 50, 75 - conservative strategy
1 PC n = 25, 50, 75 - confident strategy

Table 1: The fourteen experiments that we perform to compare the four active
vision models. PC stands for principal component(s), n for the object subset
size. For the experiments with a random first view angle, we employ a conser-
vative or a confident strategy to cope with the first observation.

The results of each experiment are obtained by performing multiple exper-
imental runs. These experimental runs start by randomly selecting an object
subset from the ALOI-database and by learning the observation probability dis-
tributions. Then, each active vision model is trained on the training angles (if
necessary) and tested on the test angles. Every model encounters the same test
objects and, in the case that the model does not determine the first viewing
angle, the same first test viewing angles. Since we regarded the experiments
with one principal component in which the models determine the first viewing

13



angle as the most standard experiments, we performed 50 different experimental
runs to obtain the results for these experiments. For the other experiments we
relied on 30 different experimental runs.

6 Results

In this section, we first show the results on the task where the first view angle is
determined by the models. Then we proceed with the results of the experiments
in which the first view angle is picked at random and is unknown to the models.

6.1 Model Determines First View Angle

Table 2 shows the mean error and standard error of the mean of all active vision
models for the experiments with one principal component. The results of each
active vision model are shown in a column, while rows represent the experiments
for a specific number of objects.

MI EL MB BH RA PA
25 84.6 (1.3) 86.1 (1.1) 81.8 (1.3) 87.0 (1.0) 74.4 (0.1) 68.6 (0.2)
50 73.6 (1.2) 71.0 (1.0) 71.1 (1.0) 72.1 (1.0) 64.0 (1.0) 47.9 (1.1)
75 63.2 (0.9) 61.4 (0.9) 62.2 (0.9) 64.7 (1.0) 58.4 (0.9) 34.2 (1.0)
100 56.8 (0.9) 54.3 (0.9) 55.6 (0.9) 62.2 (1.3) 58.5 (0.6) 27.9 (0.9)

Table 2: One principal component: results of experiments on the test set. Aver-
age performance and standard error of the mean per active vision model, based
on 50 experimental runs.

The table shows that for 25, 50, and 75 objects, all methods have a higher
mean performance than the random active vision strategy, confirming the results
from the literature [3, 10, 16]. However, it also shows that the random strategy
deteriorates less with a growing object subset. For 100 objects, the random
strategy performs better than all models, except BH. Figure 5 shows the effects
of enlarging the object subset on the performances of the active vision models.
Figure 6 to 9 more clearly bring out the differences between the active vision
models.

Figure 6 to 9 show that model MB performs worst on the smallest subset,
but performs better than model EL for the bigger subsets with an increasing
difference. The active vision model BH performs better than model EL on all
subset sizes, with an increasing difference. It attains the highest performance on
three of the four subsets, and is the only active vision model that outperforms
the random active vision strategy for 100 objects. A last observation is that
MI and BH always perform better than MB. Table 3 shows what performance
differences are statistically significant. Statistical significance was determined
with a randomisation test [5], with p < 0.05. In the randomisation test, we
determined the probability with which the performance difference between two
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Figure 5: One principal component: mean performance and standard error of
the mean of all active vision models except PA for subset sizes 25, 50, 75, and
100.

models is equal to, or bigger than, the experimental difference, given that the
two models perform equally well. In order to determine this probability, we
randomly divided the experimental results in two sets for a thousand times, and
counted the number of times for which the difference in average performance of
the two sets was equal to or bigger than the original difference. If this number
of times was smaller than 50, the assumption that the models perform equally
well is discarded: the results are then regarded to be statistically significant. In
each cell of the table we include the numbers of the object subset sizes for which
the row’s model is significantly better than the column’s model. For example,
EL significantly outperforms MB for a subset size of 25. Therefore, we included
25 in the cell with row EL and column MB.

MI EL MB BH RA PA
MI 25, 50, 75 25, 50, 75, 100
EL 25 25, 50, 75 25, 50, 75, 100
MB 25, 50, 75 25, 50, 75, 100
BH 100 75, 100 25, 100 25, 50, 75, 100 25, 50, 75, 100
RA 100 100 25, 50, 75, 100
PA

Table 3: One principal component: statistically significant results for the ex-
periments with n = 25, 50, 75, and 100 (p < 0.05). If a subset size is mentioned
in a cell, then the active vision model of the cell’s row significantly outperforms
the model of the cell’s column.

15



MI EL MB BH RA PA
60

65

70

75

80

85

90

P
er

fo
rm

an
ce

 (
%

)
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Figure 7: 50 objects: mean perfor-
mances and standard errors of the
mean.
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Figure 8: 75 objects: mean perfor-
mances and standard errors of the
mean.
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Figure 9: 100 objects: mean perfor-
mances and standard errors of the
mean.

Finally, we show how many actions the different active vision models take
to classify an object. Table 4 shows per subset size and per active vision model,
how many actions it takes on average to classify an object (first number in each
cell). We also recorded for each experimental run the maximum number of
actions taken by each active vision model. The table shows what the maximum
number of actions is that a model takes, averaged over all experimental runs
(second number in each cell). We observe from the table that on average RA
performs the most actions, with as only exception the subset size of 75 objects.
Between the other active vision models, there do not seem to be big differences
in the number of actions that they take. The average number of actions for all
models and all subsets is close to 1, indicating that the first action often already
leads to the classification of the object under evaluation.

Table 5 shows the outcome of the experiments with two principal compo-
nents. It mainly shows that the objects in the ALOI-database are rather dis-
similar, since the addition of one extra principal component causes a ceiling
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MI EL MB BH RA PA
25 1.06 / 1.82 1.04 / 1.68 1.04 / 1.64 1.05 / 1.74 1.19 / 2.26 1 / 1
50 1.09 / 2.00 1.08 / 2.08 1.08 / 2.08 1.08 / 2.00 1.30 / 2.67 1 / 1
75 1.12 / 2.14 1.11 / 2.22 1.17 / 2.44 1.18 / 2.38 1.15 / 3.06 1 / 1
100 1.15 / 2.10 1.16 / 2.40 1.22 / 2.74 1.35 / 2.54 1.52 / 3.20 1 / 1

Table 4: One principal component: number of actions performed per active
vision model, based on 50 experimental runs. The first number in each cell is
the average number of actions performed per run. The second number is the
average of the maximal number of actions performed for one object in an object
subset.

effect for the active vision model performances. The performance of the passive
vision model PA is rather good. As the subset size increases, the active vision
models outperform more and more RA and PA. Table 6 shows the statistical
significance of the performance differences. Table 7 shows the average number of
actions and the average maximum number of actions of all active vision models
for the task with two principal components.

MI EL MB BH RA PA
25 99.6 (0.3) 99.7 (0.3) 99.3 (0.3) 99.7 (0.3) 95.1 (0.9) 97.9 (0.5)
50 98.5 (0.4) 98.3 (0.4) 97.7 (0.4) 98.5 (0.3) 92.2 (0.6) 92.2 (0.8)
75 97.3 (0.4) 97.7 (0.3) 97.3 (0.4) 97.6 (0.3) 91.2 (0.6) 88.5 (0.7)
100 95.8 (0.6) 96.2 (0.5) 95.7 (0.6) 96.1 (0.5) 86.0 (0.5) 86.0 (0.7)

Table 5: Two principal components: results of experiments on the test set.
Average performance and standard error of the mean per active vision model,
based on 30 experimental runs.

MI EL MB BH RA PA
MI 25, 50, 75, 100 25, 50, 75, 100
EL 25, 50, 75, 100 25, 50, 75, 100
MB 25, 50, 75, 100 25, 50, 75, 100
BH 25, 50, 75, 100 25, 50, 75, 100
RA 75
PA 25

Table 6: Two principal components: statistically significant results for the ex-
periments with n = 25, 50, 75, and 100 (p < 0.05). If a subset size is mentioned
in a cell, then the active vision model of the cell’s row significantly outperforms
the model of the cell’s column.
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MI EL MB BH RA PA
25 1.00 / 1.03 1.00 / 1.00 1.00 / 1.00 1.00 / 1.00 1.01 / 1.13 1 / 1
50 1.00 / 1.20 1.00 / 1.10 1.00 / 1.13 1.00 / 1.10 1.02 / 1.60 1 / 1
75 1.01 / 1.47 1.01 / 1.30 1.01 / 1.33 1.00 / 1.23 1.04 / 1.93 1 / 1
100 1.01 / 1.50 1.00 / 1.37 1.00 / 1.40 1.00 / 1.37 1.04 / 2.03 1 / 1

Table 7: Two principal components: number of actions performed per active
vision model, based on 30 experimental runs. The first number in each cell is
the average number of actions performed per run. The second number is the
average of the maximal number of actions performed for one object in an object
subset.
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6.2 Random First View Angle

In this subsection, we show the results for the experiments in which the first
view angle is picked at random. Since this angle is not known to the models,
they have to follow a different strategy for updating the belief state for the first
observation, than for subsequent observations. In our experiments, we tried out
two different strategies: a conservative and a confident strategy. Both strate-
gies take the observation o and determine for each action-class pair what the
probability is that it generated the observation. The conservative strategy then
excludes the classes that have zero probability of generating the observation,
assigning equal probabilities to the remaining classes. The confident strategy
sums the probabilities over all classes per action. Then it assumes that the
action taken is the one with the highest sum of probabilities and updates the
belief state with the help of o and this most probable action.

Because the experiments with an unknown first action took more time, we
only performed experiments for n = 25, 50, and 75. Table 8 shows the results
for the task in which the first view is picked at random, where the agent em-
ploys the conservative strategy to handle the first observation. We see that the
performance of PA is much lower than for the experiments shown in Table 2.
The reason for this is that it is much harder to immediately classify an object
on the basis of one observation, if the angle is unknown. Many of the other
performances in the table are higher than those in Table 2. The reason for this
becomes evident, when investigating the number of actions executed by the ac-
tive vision models, shown in Table 10. The models take on average roughly one
action more when they do not determine the first angle. This one action is the
random, unknown angle. Apparently, the first observation leads to the exclusion
of some objects, but does not often lead to an immediate classification. With
one observation more, it is not surprising that the performances are higher than
for the experiment in Section 6.1. The only active vision model that does not
perform better, is BH. Concerning the comparison of the active vision models,
the main observation is that MI performs better than the other models on all
three subset sizes. Table 9 shows the statistical significance of the performance
differences between the various active vision models.

Table 11 shows the results for the confident strategy. Clearly, the perfor-
mances obtained are lower than for the conservative strategy. Comparing Table
13 with Table 10 reveals that, on average, the active vision models take less
actions for the confident strategy than for the conservative strategy. Assum-
ing that the random action corresponds to the most probable action results in
quicker, but faultier classifications. Table 11 shows that BH and MI perform
best for this strategy. Table 12 shows the performance differences that were
statistically significant.
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MI EL MB BH RA PA
25 89.3 (1.1) 87.0 (1.2) 80.2 (1.5) 87.0 (1.2) 76.0 (1.0) 21.8 (1.4)
50 75.0 (1.2) 73.5 (1.3) 72.5 (1.4) 72.0 (1.2) 65.0 (0.7) 12.1 (1.3)
75 66.9 (1.1) 63.0 (1.3) 66.2 (0.9) 63.8 (1.2) 60.3 (0.5) 9.3 (0.9)

Table 8: Conservative strategy: results of experiments with one principal com-
ponent on the test set where the first view is selected at random. Average
performance and standard error of the mean per active vision model, based on
30 experimental runs.

MI EL MB BH RA PA
MI 75 25 25, 50, 75 25, 50, 75
EL 25 25, 50, 75 25, 50, 75
MB 75 25, 50, 75 25, 50, 75
BH 25 25, 50, 75 25, 50, 75
RA 25, 50, 75
PA

Table 9: Conservative strategy: statistically significant results for the experi-
ments with one principal component and random first angle for n = 25, 50, 75
(p < 0.05). If a subset size is mentioned in a cell, then the active vision model
of the cell’s row significantly outperforms the model of the cell’s column.

MI EL MB BH RA PA
25 2.04 / 3.03 2.04 / 2.73 2.09 / 2.90 2.04 / 2.60 2.16 / 3.87 1 / 1
50 2.08 / 3.10 2.07 / 3.10 2.16 / 3.30 2.08 / 3.17 2.29 / 4.37 1 / 1
75 2.13 / 3.27 2.12 / 3.20 2.27 / 3.57 2.13 / 3.07 2.41 / 4.83 1 / 1

Table 10: Conservative strategy: number of actions performed per active vision
model, based on 30 experimental runs. The first number in each cell is the
average number of actions performed per run. The second number is the average
of the maximal number of actions performed for one object in an object subset.
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MI EL MB BH RA PA
25 49.9 (1.2) 43.1 (1.3) 47.8 (1.1) 50.2 (1.4) 39.9 (0.8) 23.6 (1.8)
50 51.3 (0.8) 46.3 (1.2) 47.3 (0.9) 51.2 (0.9) 37.0 (0.5) 13.0 (1.2)
75 47.6 (0.8) 46.4 (1.0) 41.9 (0.7) 48.1 (0.8) 32.3 (0.6) 7.2 (0.7)

Table 11: Confident strategy: results of experiments with one principal com-
ponent on the test set where the first view is selected at random. Average
performance and standard error of the mean per active vision model, based on
30 experimental runs.

MI EL MB BH RA PA
MI 25, 50 50, 75 25, 50, 75 25, 50, 75
EL 75 25, 50, 75 25, 50, 75
MB 25 25, 50, 75 25, 50, 75
BH 25, 50 50, 75 25, 50, 75 25,50, 75
RA 25, 50, 75
PA

Table 12: Confident strategy: statistically significant results for the experiments
with one principal component and random first angle for n = 25, 50, 75 (p <
0.05). If a subset size is mentioned in a cell, then the active vision model of the
cell’s row significantly outperforms the model of the cell’s column.

MI EL MB BH RA PA
25 1.57 / 3.03 1.57 / 3.27 1.57 / 3.17 1.59 / 3.23 1.57 / 3.23 1 / 1
50 1.86 / 3.23 1.88 / 3.67 1.86 / 3.30 1.89 / 3.60 1.87 / 3.73 1 / 1
75 1.95 / 3.27 1.97 / 3.62 1.96 / 3.62 1.97 / 3.96 1.97 / 4.00 1 / 1

Table 13: Confident strategy: number of actions performed per active vision
model, based on 30 experimental runs. The first number in each cell is the
average number of actions performed per run. The second number is the average
of the maximal number of actions performed for one object in an object subset.
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7 Analysis

In this section, we perform an analysis of the most important experimental
results. Table 14 is a summary of the results of all fourteen experiments con-
cerning the performance differences between the models (Section 6). The first
number shows for each model in how many experiments it had a higher mean
performance than each other model. The second number shows how many times
this difference was statistically significant. The table shows that MI generally
performs better than both EL and MB. We perform a small theoretical analysis
that provides theoretical support for this result in subsection 7.1. In addition,
the table shows that BH also generally performs better than EL and MB. We
discuss why BH outperforms EL in subsection 7.2. Then, we investigate remain-
ing comparisons between the models in subsection 7.3. Finally, in subsection
7.4, we provide an explanation for the surprising result that RA outperformed
other active vision models in the experiment with one principal component,
where the first view is determined by the model.

MI EL MB BH RA PA
MI 10 / 3 13 / 3 5 / 0 13 / 13 14 / 14
EL 4 / 0 8 / 3 3 / 0 13 / 13 14 / 14
MB 0 / 0 6 / 2 2 / 0 13 / 13 14 / 14
BH 8 / 1 9 / 4 12 / 5 14 / 14 14 / 14
RA 1 / 0 1 / 1 1 / 1 0 / 0 11 / 11
PA 0 / 0 0 / 0 0 / 0 0 / 0 1 / 1

Table 14: Summary of performance differences of all experiments. The first
number indicates the number of times the model of the row had a higher mean
performance than the model of the column. The second number indicates how
many times this higher performance was statistically significant in itself.

7.1 Comparison of MI with EL and MB

The active vision model MI selects an action a∗, according to1:

a∗ = argmaxai
E[H(C | oi−1,ai−1)−H(C | oi,ai)] (17)

MI calculates the expected entropy loss in the belief state (i.e., mutual infor-
mation), given the belief state and the probability distribution of observations
O for an action a. MI maximises:

E[H(C | oi−1,ai−1)−H(C | oi−1,ai−1, a, o)] = (18)

1We formulate the action selection of MI in a slightly different manner than in Section 4
in order to better compare it with EL’s action selection. Note however, that Equation 19 is
equal to Equation 10.
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∑

c∈C

∑

o∈O

p(c | oi−1,ai−1, a)p(o | c, a)log(
p(o | c, a)∑

c∈C p(c | oi−1,ai−1)p(o | c, a)
) (19)

On the contrary, EL selects actions a∗t , according to:

a∗t = argmaxat
E[H(C)−H(C | ot,at)] (20)

Where t is the time step at which a class is assigned to the object under con-
sideration. Comparing Equation 20 with Equation 17 shows that EL maximises
the entropy reduction over multiple time steps, while MI maximises the entropy
reduction over one time step. As a consequence, an advantage of EL is that it
can perform non-greedy action selection while MI always performs greedy ac-
tion selection. However, in the current object classification task, this advantage
does not seem to be of high importance. The main reason for this is that the
active vision models can change the view angle to any other angle at any time
step. Therefore, the active vision models do not need to employ a sequence of
non-greedy actions to arrive at a discriminative view angle. In addition, the
experimental results show that classification can often already be performed
with one or two observations. This does not leave much room for employing
non-greedy action selection.

The reason that MI outperforms EL in many experiments seems to be the
manner of action selection. Where MI calculates the expected entropy reduction
at every time step, EL learns an action mapping on the basis of experience.
During training it performs an action a, which leads to a specific observation o,
and to an entropy loss in the belief state:

H(C | oi−1,ai−1)−H(C | oi−1,ai−1, a, o) = (21)

∑

c∈C

p(c | oi−1,ai−1, a)log(
p(o | c, a)∑

c∈C p(c | oi−1,ai−1)p(o | c, a)
) (22)

The difference between Equation 22 and Equation 19 is that MI sums over
p(O) to calculate the expected entropy loss. On the contrary, the action map-
ping of EL averages over the observations received during training. For β = 1,
EL receives observations according to the distribution p(O | c, a) during train-
ing. With an unlimited amount of training time EL should arrive at the same
actions as MI, when the same belief state is given. However, in our imple-
mentation, EL has a limited amount of training time. In addition, the neural
network that implements Π generalises over the input space p(C | oi−1,ai−1).
Therefore, similar belief states are mapped to similar actions, even if using
E[H(C | oi−1,ai−1) −H(C | oi−1,ai−1, a, o)] suggested a different action. We
believe that this is the reason that MI outperforms EL on most experimental
settings. One could argue that the factor β = 4 is the reason for EL’s worse
performance, since it prevents EL from learning the real observation probability
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distribution. However, experiments on the tuning set showed that setting β to
4 improved performance.

MB uses Equation 12 and 14 to estimate E[H(C)−H(C|a)|k]. This estimate
makes use of a very coarse generalisation over the input space by only considering
the mode of the belief state. The amount of resulting input states is equal to
the number of classes, |C|. In addition, this estimate does not take into account
past observations and actions. The rough generalisation over the belief state
and the neglect of past information has as a result that MI outperforms MB.

7.2 Comparison of BH and EL

As mentioned in Subsection 4.4, the only difference between BH and EL is
the fitness function. EL is trained on the basis of the entropy reduction in
the belief state, while BH is trained on the basis of classification performance.
In other words, EL’s action policy is optimised so that the model is very sure
about its classification, while BH’s action policy is optimised so that the model’s
classification is correct.

In a practical setting, belief state updates on the basis of the estimated
probability distributions might not always be correct. Therefore, some belief
states might be misleading, resulting in suboptimal actions and possibly wrong
classifications. None of the probabilistic active vision models has a means for
recovering from such a belief state. BH can recover from such a misleading
belief state, e.g., by selecting an action that does not lead to the maximal
entropy reduction but that will lead to correct classification. We think that for
this reason BH outperforms EL on most experimental settings.

7.3 Other Comparisons

We did not yet compare BH with MI and MB. Theoretically, BH has the advan-
tage over the other two models that it can recover from misleading belief states.
However, MI has the advantage over BH that it does not generalise over the
belief state with a neural network. Therefore, it is difficult to determine the-
oretically whether BH should outperform MI or vice versa. The experimental
results seem to indicate that this depends on the type of problem. BH outper-
forms MI when the model can determine the first action, but MI outperforms
BH when the first angle is randomly chosen and unknown to the model. The
experimental results are clearer when it concerns the comparison between BH
and MB. In almost all experiments, BH outperforms MB.

7.4 Subset Size and Random Active Vision Strategy

In Section 6, we noted that the performance difference between the active vision
models and the random active vision strategy decreases, as the number of objects
increases. For 100 objects, the random strategy even outperforms most of the
active vision models. There seem to be two reasons for this.
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The first reason for RA’s good performance seems to lie in the number
of actions that it takes. As stated in Section 6.1, the random active vision
model takes more actions on average than the other models. The second reason
for RA’s good performance might be that, depending on the object subset, it
becomes easier to select discriminative views. When the number of objects
increases, the classification task becomes more difficult. Namely, there are more
different subgroups of objects that can appear similar from certain angles while
they appear dissimilar from others. However, this also implies that there are
more angles that can disambiguate different subgroups of objects and that it
becomes easier to find such an angle.

8 Discussion and Conclusions

In this report, we have described four active vision models in a common frame-
work and we compared them to each other empirically. In this section, we first
indicate the limitations of our empirical comparison of the active vision models.
Then we discuss the insights obtained on the difference between the probabilis-
tic and the behavioural approach to active vision. Subsequently, we discuss
the findings for the differences within the probabilistic approach. Finally, we
discuss what the experiments reveal on the relation between the usefulness of
active vision, the object subset size, and the richness of input features.

One limitation of our comparison of the different active vision models is that
we compared the active vision models on a view-based three-dimensional object
classification task only. This type of task, although widely used in the literature
(e.g., [10, 16]), has specific properties that may not be present in many real-
world problems. For example, in our task, actions represent absolute angles.
As a result, any angle view can be accessed at any time step. In real-world
problems, this might not be the case: an action might represent a shift in the
angle and larger shifts may require multiple actions. If this were the case, then
it would be wiser to employ another belief state update (e.g., a Naive Bayesian
one as in [16]) and methods that are able to find non-greedy action selection
strategies would perhaps be at an advantage (e.g., EL and BH). In addition,
in real-world problems there might be many more possible actions than just
changing the angle from which the model views an object. Additional actions,
and a continuous instead of discrete action space might also change the problem
significantly, and thus influence the performance differences between the various
active vision models.

Even though our comparison has its limits, the experimental results give
some insight into the differences between behavioural and probabilistic active
vision models. For example, one could expect a behavioural model to perform
worse on our object classification task, since the action selection strategy is not
well formalised in terms of reducing entropy. However, the results show that BH
is not at a disadvantage. The model BH has a high performance in most experi-
ments compared to the other active vision models, especially in the experiments
where the model can select the first viewing angle. Importantly, it outperforms
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EL in most experiments, while in general not performing more actions. The
lack of a well formalised action selection strategy does not necessarily result in
worse performances. However, one can argue that the model BH is not yet a
very ‘behavioural’ model. Specifically, it incorporates an explicit belief state,
which is not typical for the behavioural approach to active vision. Therefore,
future comparisons should incorporate active vision models without belief states
as well.

The experiments also provide insight into the differences within the prob-
abilistic approach to active vision. Our results and analysis indicate that in
most cases MI outperforms both EL and MB, while it does not on average take
more actions than those models. Of course, performance is not the only factor
of importance in choosing between these three models. In Section 4 we also
discussed differences in training and execution time. For example, MI has no
training time besides the estimation of the observation distributions, and has a
long execution time. On the contrary, EL has a long training time, but a very
short execution time. MB has both a short training and execution time and
does not seem to perform much worse than EL.

The experimental results reveal a relation between the usefulness of active
vision, the number of objects, and the richness of input features. The experi-
ments confirm two general expectations on this relation, but also indicate two
challenges for the field of active vision. For example, as expected, performance
on the classification task improves if input features (in our case principal com-
ponents) are added. However, for the object subset sizes that we studied, this
improvement was much larger than expected. In particular, the addition of the
second principal component improved the performance on the classification task
more than the addition of sensible action selection. The mean performance of
the passive vision model PA in Table 5 is higher than the mean performances of
the active vision models in Table 2. This result introduces a doubt regarding the
usefulness of active vision in the light of a trade-off with better or more input
features. Of course, there can be cases in which a passive vision strategy cannot
solve a classification problem. For example, in [10], 3-D puppets are used that
are only different when seen from one particular viewing angle. However, it is to
be seen whether many real-world problems are of this type. Therefore, it seems
to be a challenge for the field of active vision to find action selection strategies
that also improve the performance when visual information has already been
optimised for the task. Another general expectation that the results confirmed
is that performance should go down, as the object subset grows. Surprisingly
however, under some conditions the performance difference between RA and
other active vision models becomes smaller with increasing object subset size.
In the experiment where the model can select its first view angle and with a
subset size of 100 objects, RA even outperforms all other active vision mod-
els, except for BH. This result suggests that the challenge in applying active
vision models to large object sets does not only reside in dealing with computa-
tion time (increasingly long training or execution times), but also with sensible
action selection.
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