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Abstract— A highly efficient corner finding algorithm, named
ACT-CORNER, is introduced. The algorithm uses active sub-
sampling: it searches for corners by exploiting information from
local image samples. ACT-CORNER is compared to both the
Harris and FAST corner detectors. It is computationally much
more efficient than the Harris corner detector. The comparison
with FAST depends on the image size, with an advantage for
ACT-CORNER for image dimensions of 320 x 240 pixels or
larger. ACT-CORNER'’s performance is evaluated in the context
of optic flow based Time-To-Contact (TTC) estimation. Image
zoom experiments show that the accuracy of TTC estimations
is similar when ACT-CORNER or FAST are used for corner
detection. Finally, experiments with a Parrot AR drone show
that the TTC estimates based on ACT-CORNER correspond
well to sonar-based estimates.

. INTRODUCTION

Optic flow is an important visual cue for the autonomou
operation of robots. Especially when the robot is fast an
agile, optic flow has to be calculated at a sufficiently high).
frequency. For this reason, there is a growing body of wor
on the use of specific optic flow hardware, such as computer
mouse sensors [3] or artificial Elementary Motion Detector

[5]. However, the wide availability and multi-functioniliof

normal digital cameras makes them still of interest for opti
flow determination. Typically, optic flow methods determine™
the flow in camera images by (1) finding locations in th

current image that are suitable for being tracked over ti

(henceforth referred to as ‘corners’), and (2) tracking the

corners to the subsequent image.

The first step, corner finding, can be computationally in-
tensive. As an example, the well-known Harris corner findin
algorithm [7] calculates the first order and approximate
the second order derivatives of an image's gray value
while convolving intermediate image representations with
Gaussian filter. Even for small images, an implementatio
on an embedded processor can require up to a hund e

milliseconds of processing time.

Several computationally more efficient methods than Ha

cation problem but as a visual search problem. The idea of
performing a visual search in images on the basis of local
image samples is far from new (cf. [2]). However, to date the
rare algorithms implementing the idea for corner detection
are computationally expensive (cf. [1]).

In this article, a new algorithm called ACT-CORNER is
introduced that does display high computational efficiency
and an accuracy comparable to existing corner detection
algorithms. ACT-CORNER usesactive sub-samplingthe
algorithm performs an informed search for corners by means
of ‘agents’ that process a small local image sample and then
either stop or move to explore another sampling location. To
understand the potential advantage of this method, one can
consider an agent looking at the edge of a table’s leg. 8bifti
its gaze upwards or downwards along the edge will result in
inding the corner of the leg with the table plane or with the
oor. Of course, the challenge in active sub-sampling les i
nding smart exploration strategies.

The remainder of the article is organized as follows. In
§ection II, the ACT-CORNER algorithm is explained. Its
computational efficiency is compared to that of Harris and
FAST in Section Ill. Subsequently, in Section IV the perfor-
ance of the three corner finding algorithms is compared on

& Time-To-Contact (TTC) estimation task. Conclusions are
mg:rawn in Section V.

1. ACT-CORNER

ACT-CORNER is an active sub-sampling method for
orner detectionSub-samplingmeans that only a limited
umber of local image samples are procesgative means
at samples are taken in sequence, with the next sampling
Ocation chosen on the basis of the current sample. Since
e current sample gives only partial information on the
&ation of surrounding corners, the problem belongs to the
challenging class of Partially Observable Markov Decision

Fjroblems (POMDPSs). The problem is further complicated by

fis have been introduced, of which FAST [11], [12] is the ond!'€ N€€d to identify several good corners.

that is most often used on small robots or mobile devices.
FAST is computationally more efficient than Harris, since i
employs a simplified definition of what is to be considere

To approach the problem, an evolutionary swarm robotics

{nethodology is adopted [10], [13]. Under this methodology,
(_ljhe search for corners is performed by a group of agents

a comner, and machine learning is used in order to performat move over the image. Their controllers determine the

corner classification tests as efficiently as possible.

movements by mapping image samples to image shifts. The

A perhaps even larger reduction of computational effort if€€ parameters of the agents’ controllers are optimized by

possible if corner detection is not approached as a classi
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ﬁ_form of evolutionary algorithm. During the evolutionary
optimization, potential solutions are retained or disedrd
on the basis of the overall performance of the agents in

solving the active sub-sampling task. This method permits
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Fig. 1. From left to right: (1) example application of ACT-CORNER to an onboard image @#trésolution and brightened for illustration purposes)
of the Mars rover Opportunity — details in the text. (2) Havalues at all image locations, with the end locations of mdpagents (squares), (3) the
locations at which the agent commands a stop (indicated witldaverlay), (4) the size of the agent’s image shi{;ézxm? + Ay?.

might be hard to obtain through explicit design techniquesinboard images of the NASA Mars rover Opportufiit(?)
and (iii) generate coordinated and self-organizing ctilec photos made on the highway, (3) images made onboard Mi-
behaviours that can allow the agents to explore differemro Air Vehicles, (4) Lunar Reconnaissance Orbiter Camera
parts of the image and to identify several corners. Below wg.ROC) images of the moon surfagend (5) indoor photos.
describe the characteristics of the agents, the way in whidfhe images vary significantly in light conditions and amount
they are evolved, and the evolved corner finding strategie@f texture / contrast. To limit the time necessary for the
evolutionary process, each generation of solutions has bee
A. Agent -
tested on a set of 10 images randomly selected from the
An agent is constituted by a perceptron neural networaining set. With different images per generation pemid|a
that has 51 input neurons and 3 output neurons. The first $k entire evolution involvedx 10x 200 = 12, 000 randomly
input neurons encode for the horizontal and vertical imaggs|ected images. Hence, it is likely that during evolutiostn
gradients/,, and/,, of a5 x 5 pixel window centered on the training set images have been used.
agent location. The last input neuron is a bias with constant The goal of ACT-CORNER is to find as many image lo-
value 1. The output neurons include one binary motor neurQitions as possible that have a high Harris value. Altereati

that determines whether the agent will remain in its currenfo|utionsw are compared on the basis of the fitness function:
location (s = 0) or will move (s = 1), and two additional . o
[ ay

motor neurons that determine the offset of the movement
along the horizontal and the vertical axidz, Ay) within a fw)=3 > > > hilnw),
[—10, 10] pixel range. All input neurons project connections
to all output neurons. whereZ is the set of 10 imagesd the set of agentga,, a,)

As a consequence of the neural network structure, ths the final position of agent, andh;(x,y) is the imagei’s
agent always reacts in the same way to the same visudarris value at locatior, y. In order to discourage agents
inputs. The way in which the agent explores the image arfthding the same corners in the imade(z, y) is set to zero
selects a corner point depends on the 153 connection weigfftit has been included in the fitness of one of the agents.

w of the agent’s neural controller that are evolved through . , .

the algorithm described in the next section. For each imagg; Analysis of the Agents’ Behavior

at the first time stept(= 1), 25 agents are initialized on a The optimization leads to a satisfactory solution. The

(5 x 5) grid over the image. Each agent then interacts witveight vector optimized by PSO achieves a mean fitness per

the image until either (i) it issues a stop command, or (i) itgent of2.45 - 10~ on a generalization test made on a set

runs out of time { = 15). If an agent moves off the image, it of 13 images (different from those used for optimization).

reappears at the other side. The final locations of the agerfiter comparison, the mean fitness of random locations on the

are the corners found by ACT-CORNER. same set i4.63-10~! and that of the first 25 Harris corners
o is 3.93-107L. Since these values are difficult to interpret, in

B. Optimization of a Swarm of Agents Section IV, ACT-CORNER'’s performance is measured on a

The free parameters of the agents’ neural controllers (i.@&ime-to-contact estimation task.
the weightsw) have been optimized with the generational |n this subsection the agents’ behavior is first shown
Particle Swarm Optimization (PSO) algorithm of the operand then analyzed in order to give insight into why ACT-
source project PyGM® The optimization took place on 6 CORNER can successfully locate corners. The leftmost inset
‘islands’ (parallel processors), each containing a pdria of Figure 1 shows an example application of 25 agents to an
of 64 solutionsw. Evolution continued for 200 generations.image from the training set. The agents start on a grid (red
The training set consists of 936 (greyscal#) x 120 and squares) and move over the image (black arrows) until they
120 x 120) images collected from five main sources: (1)

1)

i€ acAr=a,—2y=a,—2
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either issue a stop command (green squares) or run out aderations). This is followed byx (W —2) x (H —2) single
time (blue squares). The following inset of Figure 1 showpixel operations. Nonmaximum suppression requires at leas
the Harris values at all image locations. The final location§iV —2) x (H —2) additional pixel operations. Altogether, the
of stopped agents are indicated with white squares. The maibove reasoning leads to an estimatetf (W —2) x (H—2)
observation from the figure is that the agents end up isingle pixel operations. This leads th:789, 824 operations
areas with considerable texture. Many final locations haver 160 x 120 images,7, 265, 664 operations for320 x 240
high Harris values, although not all of them are located oimages, an@9, 276, 544 operations for640 x 480 images.
local maxima. Possibly missing the highest Harris values is FAST [11] performs the following steps:

inherent to a sub-sampling algorithm such as ACT-CORNER. 1y A comer test for each pixel in the image, involving a

A secondary observation is that the agents generally move  gecision tree that compares the values from a 16-pixel

to the top left, modulating their movements on the way.  ring around the center pixel with the value of the center
Deviations of the general movement direction typicallywrcc pixel. The test ascertains whether there is a group of
in response to strong edges. contiguous pixels in the ring that is brighter or darker
In the two rightmost insets of Figure 1 the following than the pixel center. A pixel from the ring can be
information is shown at all image locations: the locatiohs a brighter Qring > PeentertT), darker ring < peente— 1),
Which the agent commar_1ds a step= 0 (red ov_erlay), and or similar Qeenter— T < pring < Peenter+ T).-
the size of the image shifts/Az? + Ay?. The insets lead  2) For each comer, first a corner response function is
to two major observations. First, the stop locations are all ~ cajculated. To find the corner strengthin the online
located in textured areas, but also include locations thetns implementations of FAST, a binary search is performed
to have only one dominant contrast (horizontal or vertical) to find the maximum threshol}y for which the

Only having one dominant contrast can be disadvantageous cqrner is still defined as a corner.
for determining optic flow because of the aperture problem. 3) Non-maximum suppression.
Second, the agents move faster in textureless areas such . .
. e number of operations of FAST mainly depends on
as the sky, and slower in textured areas. There are some . o
: o .. image size and the values afand T, which influence the
textured areas with strong contrast resulting in largetshif . ; ! .
o . - mber of pixel comparisons. For each pixel fivgter— T

but the direction of these shifts depends on the position g .

X . ) and peenter + 7' are calculated (2 operations), and then the
the contrast in the window. As a consequence, in the case .- .

. : .décision tree performs a number of comparisons. For
of e.g. a horizontal contrast, agents shift up and down wh|I|g

still moving left. This allows the agents to move along edges. > 2" = 9 ande = 2.26 on average [11]. This would
g lett 9 g edg imply 4.26 (W — 6) (H — 6) operations. Since binary search
by then stopping when a corner is found.

has an average complexity &fgo(N) — 1, with N = 256
[1l. COMPUTATIONAL EFFORT in the case of the threshold, 7 operations are assumed for

The main reason for ACT-CORNER’s setup is to achievdhe corner response calculation. Another 8 are used to do
a high computational efficiency. In this section ACT-IN€ nonmaximum suppression of a point with an 8-pixel

CORNER’s computational effort is compared to that ofteighborhood. So after corner detection, 15 operations are
Harris [7] and FAST [11], [L2]. First a coarse analysis igoerformed per corner. Witli' = 25 detected corners and

performed of the expected number of computations. Thely * # = 160120, 25x 15 +4.26 x 154 x 114 ~ 75, 164.
C++ implementations of the algorithms are compared. For 320 x 240 and 640 x 480 pixels, the estimates amount
to 313,383 and 1, 280,573 operations, respectively.

A. Complexity Analysis ACT-CORNERmaximally performst times the steps:
The Harris algorithm [7] consists of the following steps: 1) Calculation ofl,, I, at the A agent locations
1) Calculation ofl,, I,: performed by, e.g., convoluton 2) Computation of the perceptron outputs
with Sobel masks. The first step uses Sobel masks and invol2e$ multipli-
2) Approximation ofl,;, Iy, I, by multiplying I, I,,,  cations and additions ¢f x 3 image patches (17 operations
e.g.. Iy ~ I, I,. The resulting matrices are convolvedper patch). The second step involvégimes 153 multiplica-
with a Gaussian mask (e.g., of si3dex 3) to render tions, 150 summations, and 3 activation function evalustio

the following step effective. (estimated in total ag10 operations). The total number of
3) Computation of the Harris valuéi(z,y) = (I..1,, — operations is thehx A x 344. The current setup with= 15
12,) = k(Ia + Iy)?, where typicallyk = 0.04. and A = 25 would lead t0129, 000 operations.
4) Non-maximum suppression. Although the actual computation times strongly depend

In aW x H image, the first step requiresx (W —2) x  on the exact implementation and hardware, this analysis
(H —2) multiplications and additions df x 3 image patches indicates that the computation cost of the ACT-CORNER is
(counted ad 7 operations9 for multiplication, 8 for adding lower than the HARRIS algorithms by a factor 1.9, 56.3,

the results). Here it is assumed thHatand I, are calculated and226.9, for images of160 x 120, 320 x 240, 640 x 480

with the help of3 x 3 Sobel masks. The second step involvesespectively. ACT-CORNER also requires fewer operations
3 x (W —2) x (H — 2) single pixel operations followed than the FAST algorithm for images 20 x 240 and

by 3 x (W —2) x (H — 2) patch multiplications (again7 640 x 480 pixels by a factor of2.4 and 9.9, respectively.



AVERAGE PROCESSING TIMES OF THHARRIS, FAST, AND
ACT-CORNERALGORITHMS FOR DIFFERENT IMAGE SIZES

TABLE |

vision processing. In this section, the performance of ACT-
CORNER is studied and compared with Harris and FAST in
the context of a Time-To-Contact (TTC) estimation fask

160 x 120 | 320 x 240 | 640 x 430
Laptop A. Optic Flow Determination
Harris 3.47 ms 12.67 ms | 46.46 ms
FAST 0.17 ms 0.84 ms 2.69 ms The optic flow determination receives the corners found by
ACT-CORNER| 0.49ms | 0.78 ms | 1.02ms one of the three algorithms and tracks them to the next image
DsP with the well-known Lucas-Kanade algorithm [4]. A naive
ACT-CORNER| 10 ms 12 ms 14 ms implementation would provide the optic flow vectors dirgctl

to the TTC estimation algorithm. However, in order to obtain
Moreover the computational cost of ACT-CORNER does nojccurate estimates at large TTCs, two additional measures
directly depend on image size as for the other two algorithmgre taken: (1) unreliable optic flow vectors are discarded,
The number of required operations might increase linedrly hnd (2) points are followed over time with a Kalman Filter.
the number of agents or number of time steps is increasethe first measure involves tracking the features back from
However, the algorithm scales rather well to larger imagege current frame to the past frame, and evaluating whether
with the same parameters. they are sufficiently close to the original feature locasion

B. Empirical comparison computational effort The second measure involves a motion model that assumes
the optic flow to remain constant over time.

For the empirical comparison of the computational effort,
C++ implementations o_f the three algqrithms have beep Time-To-Contact Estimation Algorithm
compared on a laptop with an Intel Core i7 processar.@i h hi bi h di isual fi
GHz. The FAST-implementation is the one made available at When approaching ?nho ject,'the e€xpanding V|shua ow
4, the Harris implementation is the one included in the opeH,rO,VIdeS a measure of the TT(,:' the dlstan'ce to the quect
source software package OperfC\Wvhile ACT-CORNER divided b_y the app_roach velocity The algorlthm used in
has been implemented by the authors. Table | shows the avil}e experiments estimates the TTC by determining the diver-

age number of milliseconds spent by the three algorithms dignee O,f the optic flow field. It assumes (1) thaF the objec_t is
processing images of different sizes (results under ‘Lijto predominantly planar, and (2) that camera rotations aheeit

The experimental results qualitatively correspond to tie t not present or are accounted for by means of proprioception

expectations from the complexity analysis. First, Harris(ViZ' derotation ba;ed on gyrometgrs). , .
method is by far slowest on all image sizes. Second, the N the explanation of the algorithm a pinhole model is
FAST corner detector is faster on the smallest image Simthgssumed, as in [8,]' The foII9W|ng notation is used. Image
ACT-CORNER and slower on larger image sizes, althoughPordinates of an imaged poifit are denoted ag = (z,y),

the difference is quantitatively smaller than expected. ARPUC flow as(u,v), and the spatial derivatives of optic flow
unexpected result is that the computation cost of the ACTS Uz Uy, Uz, @nd v,. Translational velocity is expressed
CORNER slightly increases with the image size. This is dugS = (Va, Vs, V‘?)' The world point imaged on _the
to the fact that the usage of the same movement range on 'Bage center(0,0), is na_medl_Dc. The_ distance toPc IS
images implies the exhibition of a longer movement phasé" The camera only provides information on the normalized

before stopping, in order to traverse the larger texturerpo VeloCty: U = (U, 9y,9.) = V/Z. Finally, the inclination
areas experienced in larger images. of the surface around poift: is represented by, , z,.

Assuming no camera rotation, we have from [8]:
Finally, a C implementation of ACT-CORNER has been

made for the Digital Signal Processor (DSP) of the Sur- uc = Vo, ve ==Yy @
veyor BlackFin camera system, which can be used on small Up =02+ Dpze, Uy =02+ 0y2, 3)
robotic systems. Table | shows the processing times of ACT-

CORNER for different image sizes (results under ‘DSP’). Uy = Vg2, Vg = Vyzy 4)

The main observation here is that ACT-CORNER can be
run at an execution frequency of 71 Hz — 100 Hz (faster The divergence gbc can then be written as:
than the maximal image capture frequency). Please remark
that no DSP-specific optimizations of the code have been
performed, so further speed-ups are possible.

IV. PERFORMANCE COMPARISON ON

div(pe) = uy + vy = 20, + V52, + 0y2y. (5)

8ln computer vision, corner detectors are typically testednarasures
such as repeatability, i.e., how often the algorithm fin@sshme world point
in images from different angles and positions. Since ACT-GIBR does
TIME-TO-CONTACT ESTIMATION not process the entire image, it is not to be expected thatine point will
The computational efficiency of ACT-CORNER is onIy of be detected in both image_s. Moreove_r, repeatability is ndtea:idmeas_ure

. . ) of how well corners are suited for optic-flow-based dowrstrgorocessing.

value if the corners are of sufficient quality for downstreamnerefore, repeatability tests seem less adequate thaprépsed TTC
estimation tests for studying ACT-CORNER in a robotic cohtex

"Please remark that the TTC is only equal to the actual time réngain
until contact if the approach velocity remains constant.
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Fig. 2. Box plots representing the estimated TTC distrimgiper time step for digital zoom approach sequences in the diffistlt image set (indoor).
The time-to-contact decreases from 100 to 5 frames. The bds fillastrate the interquartile ranges. Red squares reptesutliers.

TABLE I

The divergence is inversely related to the TTC (denoted as .
ACCURACY ON ZOOM SEQUENCES|7 — 7| (IN FRAMES).

7). For example, in the case of, = 9, = 0:

1 9 Harris FAST ACT-CORNER

T=—=—— (6) Moon surface 7.9 (+£25.7) 14.1 (£60.1) | 13.5 (£57.3)

9. div(p) Indoor 19.4 (£67.6) | 34.3 (£76.9) | 27.5 (£99.7)

with 7 the time at which the camera center will touch point_Opportunity rover S-i ((f;,i?) 1?-3 Ei}é-i; fo% ((i‘;%i))
. . . Urban outdoor . . . . . .

Pc if the velocity V. stays the same. With nonzeth.z, e ——a oG 135 (T48.5) | 0.4 (£417)

or ¥, z,, the divergence can still be regarded reciprocal to 'a

time-to-contact, if the surface arouritlis assumed to extend

to the point in which it intersects the direction of motion. images (106 sequences), and (5) forest outdoor images (66
As stated before, the algorithm employed here to estimag&duences). The generated images have dimension120.

the TTC assumes the object to be predominantly planar. 4t constant velocity approach is simulated by the zoom, with
estimates the parametaps, p. of the equations: the TTC decreasing from 100 frames to 5 frames. The results

can be seen in Table Il. Three main observations can be made

u=uc + Uz + uyy = (1,2,y)pu’, (7)  from the table. First, the Harris corner detector overaitie
v = e + va + vyy = (1,2,5)py". ®) to the most accurate downstream yisiqn processing redults:
has the lowest mean absolute estimation etrer7 on four
Having the parameter vectorsp,, pv permits out of five sets. Second, ACT-CORNER achieves slightly
the calculation of the divergence and thereforenore accurate results than FAST and slightly lower mean
the TTC. Estimation of the parameters is donerror than Harris on the Opportunity image set. Its standard
with the help of the set of optic flow vectors deviation is a bit higher than that of the other methods.&;hir

V = {(u1,v1,21,91), (u2,v2,Z2,y2), ... (un,vn,zn,yn)}  all three methods obtain the highest error on the indoor énag
found as described in the Subsection IV-A. The algorithrmooms. The reason for this is that indoor environments can
finds least-squares solutions to the systems: have too little texture to reliably determine optic flow and
consequently TTC (cf. [6]).

©) To further clarify the results in Table Il, Figure 2 shows the
where u consists of allu;, v consists of allv;, and A  least accurate results of ACT-CORNER (indoor image set).
is a matrix with rows(z;,%;,1). In order to be robust to The box plots illustrate the interquartile ranges of the TTC
both noise and deviations from the planar assumption, &stimate £) distribution per time step of the approach. The
RANSAC procedure is used for both fits (using 20 fits of Svhiskers extend to the interquartile ranges.5 times their
flow vectors). The parameters with lowest error on all optiglifference. The crosses illustrate ‘outliers’, i.e., esites

flow vectors)V are selected. If there are too few points or ifthat are further away from the interquartile ranges than the
all the points are colinear, the TTC is assumed to be 0. Whiskers. Almost all7-distributions are close to the true

TTC, with the box plots forming a line decreasing from

C. Image Zooms ~ 100 to ~ 5. There is a considerable number of outliers

In order to generate a large number of tests while stithough, which are mainly caused by a lack of texture. A
having access to ground-truth TTC values, experiments hasabsidiary observation is that the first few time steps have a
been performed on digital image zooms. Five image sets halager estimate variance than the rest of the approach. This
been employed, mentioned here with the number of resulting due to the initialization of the Kalman filtering. Finally
image sequences: (1) moon surface images (30 sequence®ase note that results could further be improved by filtgri
(2) indoor images (62 sequences), (3) images of the NASthe TTC estimates over time (e.g., rejecting outliers).
Mars rover Opportunity (27 sequences), (4) urban outdoor

u:Apuv V:Apva
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Fig. 3. Left: Parrot AR drone during the experimerRight: TTC estimates (blue dashed line) and sonar-based TTC (gieendver time, with
corresponding images from the onboard downward pointing caniée drone first recedes from the moon surface posters andagpproaches them.

D. Robotic Experiments —o0 to +oo. The filtering results in a delayed response to

In this Subsection, the TTC estimation algorithm using}hIS singularity and some erroneous TTC-values.

ACT-CORNER is applied to a real robotic platform, im- V. CONCLUSIONS

plying perturbing factors such as image noise and motion we conclude that ACT-CORNER successfully detects cor-
blur. To this end, experiments are performed with a Parreiers sujtable for optic-flow based time-to-contact estionat

AR drone, which is equipped with a downward-pointingThe method is computationally efficient, performing far
camera (sending images at 20 frames per second) and sopgfer operations than the Harris corner detector on any
sensor. Given a smooth surface, the sonar sensor proviqﬁ,%lge size and performing fewer operations than FAST on
reliable measurements of the drone’s altitude over tim%age sizes larger tha20 x 240. Finally, experiments with
These measurements can be used to determine a ‘grouRdparrot AR drone show that the TTC estimates based on

measure TTCs outside the interval [ef1000, 1000] frames,
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