
ACT-CORNER: Active Corner Finding for Optic Flow Determinati on

Guido C.H.E. de Croon1 and Stefano Nolfi2

Abstract— A highly efficient corner finding algorithm, named
ACT-CORNER, is introduced. The algorithm uses active sub-
sampling: it searches for corners by exploiting information from
local image samples. ACT-CORNER is compared to both the
Harris and FAST corner detectors. It is computationally much
more efficient than the Harris corner detector. The comparison
with FAST depends on the image size, with an advantage for
ACT-CORNER for image dimensions of 320 × 240 pixels or
larger. ACT-CORNER’s performance is evaluated in the context
of optic flow based Time-To-Contact (TTC) estimation. Image
zoom experiments show that the accuracy of TTC estimations
is similar when ACT-CORNER or FAST are used for corner
detection. Finally, experiments with a Parrot AR drone show
that the TTC estimates based on ACT-CORNER correspond
well to sonar-based estimates.

I. INTRODUCTION

Optic flow is an important visual cue for the autonomous
operation of robots. Especially when the robot is fast and
agile, optic flow has to be calculated at a sufficiently high
frequency. For this reason, there is a growing body of work
on the use of specific optic flow hardware, such as computer
mouse sensors [3] or artificial Elementary Motion Detectors
[5]. However, the wide availability and multi-functionality of
normal digital cameras makes them still of interest for optic
flow determination. Typically, optic flow methods determine
the flow in camera images by (1) finding locations in the
current image that are suitable for being tracked over time
(henceforth referred to as ‘corners’), and (2) tracking the
corners to the subsequent image.

The first step, corner finding, can be computationally in-
tensive. As an example, the well-known Harris corner finding
algorithm [7] calculates the first order and approximates
the second order derivatives of an image’s gray values,
while convolving intermediate image representations witha
Gaussian filter. Even for small images, an implementation
on an embedded processor can require up to a hundred
milliseconds of processing time.

Several computationally more efficient methods than Har-
ris have been introduced, of which FAST [11], [12] is the one
that is most often used on small robots or mobile devices.
FAST is computationally more efficient than Harris, since it
employs a simplified definition of what is to be considered
a corner, and machine learning is used in order to perform
corner classification tests as efficiently as possible.

A perhaps even larger reduction of computational effort is
possible if corner detection is not approached as a classifi-

1 Micro Air Vehicle lab, Delft University of Technology, Delft, and
Advanced Concepts Team of the European Space Agency, Noordwijk, the
Netherlands.g.c.h.e.decroon@tudelft.nl

2 Consiglio Nazionale delle Ricerche (CNR), Roma, Italy.
stefano.nolfi@istc.cnr.it

cation problem but as a visual search problem. The idea of
performing a visual search in images on the basis of local
image samples is far from new (cf. [2]). However, to date the
rare algorithms implementing the idea for corner detection
are computationally expensive (cf. [1]).

In this article, a new algorithm called ACT-CORNER is
introduced that does display high computational efficiency
and an accuracy comparable to existing corner detection
algorithms. ACT-CORNER usesactive sub-sampling: the
algorithm performs an informed search for corners by means
of ‘agents’ that process a small local image sample and then
either stop or move to explore another sampling location. To
understand the potential advantage of this method, one can
consider an agent looking at the edge of a table’s leg. Shifting
its gaze upwards or downwards along the edge will result in
finding the corner of the leg with the table plane or with the
floor. Of course, the challenge in active sub-sampling lies in
finding smart exploration strategies.

The remainder of the article is organized as follows. In
Section II, the ACT-CORNER algorithm is explained. Its
computational efficiency is compared to that of Harris and
FAST in Section III. Subsequently, in Section IV the perfor-
mance of the three corner finding algorithms is compared on
a Time-To-Contact (TTC) estimation task. Conclusions are
drawn in Section V.

II. ACT-CORNER

ACT-CORNER is an active sub-sampling method for
corner detection.Sub-samplingmeans that only a limited
number of local image samples are processed.Activemeans
that samples are taken in sequence, with the next sampling
location chosen on the basis of the current sample. Since
the current sample gives only partial information on the
location of surrounding corners, the problem belongs to the
challenging class of Partially Observable Markov Decision
Problems (POMDPs). The problem is further complicated by
the need to identify several good corners.

To approach the problem, an evolutionary swarm robotics
methodology is adopted [10], [13]. Under this methodology,
the search for corners is performed by a group of agents
that move over the image. Their controllers determine the
movements by mapping image samples to image shifts. The
free parameters of the agents’ controllers are optimized by
a form of evolutionary algorithm. During the evolutionary
optimization, potential solutions are retained or discarded
on the basis of the overall performance of the agents in
solving the active sub-sampling task. This method permits
to: (i) solve POMDPs by exploiting sensory-motor coor-
dination [9], (ii) identify simple and robust solutions that

Fig. 1. From left to right: (1) example application of ACT-CORNER to an onboard image (at full resolution and brightened for illustration purposes)
of the Mars rover Opportunity – details in the text. (2) Harris values at all image locations, with the end locations of stopped agents (squares), (3) the
locations at which the agent commands a stop (indicated with a red overlay), (4) the size of the agent’s image shifts,

√

∆x2 +∆y2.

might be hard to obtain through explicit design techniques,
and (iii) generate coordinated and self-organizing collective
behaviours that can allow the agents to explore different
parts of the image and to identify several corners. Below we
describe the characteristics of the agents, the way in which
they are evolved, and the evolved corner finding strategies.

A. Agent

An agent is constituted by a perceptron neural network
that has 51 input neurons and 3 output neurons. The first 50
input neurons encode for the horizontal and vertical image
gradientsIx andIy, of a 5×5 pixel window centered on the
agent location. The last input neuron is a bias with constant
value 1. The output neurons include one binary motor neuron
that determines whether the agent will remain in its current
location (s = 0) or will move (s = 1), and two additional
motor neurons that determine the offset of the movement
along the horizontal and the vertical axis(∆x,∆y) within a
[−10, 10] pixel range. All input neurons project connections
to all output neurons.

As a consequence of the neural network structure, the
agent always reacts in the same way to the same visual
inputs. The way in which the agent explores the image and
selects a corner point depends on the 153 connection weights
w of the agent’s neural controller that are evolved through
the algorithm described in the next section. For each image,
at the first time step (t = 1), 25 agents are initialized on a
(5 × 5) grid over the image. Each agent then interacts with
the image until either (i) it issues a stop command, or (ii) it
runs out of time (t = 15). If an agent moves off the image, it
reappears at the other side. The final locations of the agents
are the corners found by ACT-CORNER.

B. Optimization of a Swarm of Agents

The free parameters of the agents’ neural controllers (i.e.,
the weightsw) have been optimized with the generational
Particle Swarm Optimization (PSO) algorithm of the open
source project PyGMO1. The optimization took place on 6
‘islands’ (parallel processors), each containing a population
of 64 solutionsw. Evolution continued for 200 generations.
The training set consists of 936 (greyscale160 × 120 and
120 × 120) images collected from five main sources: (1)

1http://pagmo.sourceforge.net/pygmo/

onboard images of the NASA Mars rover Opportunity2, (2)
photos made on the highway, (3) images made onboard Mi-
cro Air Vehicles, (4) Lunar Reconnaissance Orbiter Camera
(LROC) images of the moon surface3, and (5) indoor photos.
The images vary significantly in light conditions and amount
of texture / contrast. To limit the time necessary for the
evolutionary process, each generation of solutions has been
tested on a set of 10 images randomly selected from the
training set. With different images per generation per island,
the entire evolution involved6×10×200 = 12, 000 randomly
selected images. Hence, it is likely that during evolution most
training set images have been used.

The goal of ACT-CORNER is to find as many image lo-
cations as possible that have a high Harris value. Alternative
solutionsw are compared on the basis of the fitness function:

f(w) =
∑

i∈I

∑

a∈A

ax+2
∑

x=ax−2

ay+2
∑

y=ay−2

hi(x, y), (1)

whereI is the set of 10 images,A the set of agents,(ax, ay)
is the final position of agenta, andhi(x, y) is the imagei’s
Harris value at locationx, y. In order to discourage agents
finding the same corners in the image,hi(x, y) is set to zero
if it has been included in the fitness of one of the agents.

C. Analysis of the Agents’ Behavior

The optimization leads to a satisfactory solution. The
weight vector optimized by PSO achieves a mean fitness per
agent of2.45 · 10−1 on a generalization test made on a set
of 13 images (different from those used for optimization).
For comparison, the mean fitness of random locations on the
same set is1.63 ·10−1 and that of the first 25 Harris corners
is 3.93 · 10−1. Since these values are difficult to interpret, in
Section IV, ACT-CORNER’s performance is measured on a
time-to-contact estimation task.

In this subsection the agents’ behavior is first shown
and then analyzed in order to give insight into why ACT-
CORNER can successfully locate corners. The leftmost inset
of Figure 1 shows an example application of 25 agents to an
image from the training set. The agents start on a grid (red
squares) and move over the image (black arrows) until they

2http://marsrover.nasa.gov/
3http://www.lroc.asu.edu/

either issue a stop command (green squares) or run out of
time (blue squares). The following inset of Figure 1 shows
the Harris values at all image locations. The final locations
of stopped agents are indicated with white squares. The main
observation from the figure is that the agents end up in
areas with considerable texture. Many final locations have
high Harris values, although not all of them are located on
local maxima. Possibly missing the highest Harris values is
inherent to a sub-sampling algorithm such as ACT-CORNER.
A secondary observation is that the agents generally move
to the top left, modulating their movements on the way.
Deviations of the general movement direction typically occur
in response to strong edges.

In the two rightmost insets of Figure 1 the following
information is shown at all image locations: the locations at
which the agent commands a stops = 0 (red overlay), and
the size of the image shifts,

√

∆x2 +∆y2. The insets lead
to two major observations. First, the stop locations are all
located in textured areas, but also include locations that seem
to have only one dominant contrast (horizontal or vertical).
Only having one dominant contrast can be disadvantageous
for determining optic flow because of the aperture problem.
Second, the agents move faster in textureless areas such
as the sky, and slower in textured areas. There are some
textured areas with strong contrast resulting in large shifts,
but the direction of these shifts depends on the position of
the contrast in the window. As a consequence, in the case
of e.g. a horizontal contrast, agents shift up and down while
still moving left. This allows the agents to move along edges
by then stopping when a corner is found.

III. COMPUTATIONAL EFFORT

The main reason for ACT-CORNER’s setup is to achieve
a high computational efficiency. In this section ACT-
CORNER’s computational effort is compared to that of
Harris [7] and FAST [11], [12]. First a coarse analysis is
performed of the expected number of computations. Then,
C++ implementations of the algorithms are compared.

A. Complexity Analysis

The Harris algorithm [7] consists of the following steps:

1) Calculation ofIx, Iy: performed by, e.g., convolution
with Sobel masks.

2) Approximation ofIxx, Ixy, Iyy by multiplying Ix, Iy,
e.g.,Ixx ≈ Ix Ix. The resulting matrices are convolved
with a Gaussian mask (e.g., of size3 × 3) to render
the following step effective.

3) Computation of the Harris value:h(x, y) = (IxxIyy −
I2xy)− k(Ixx + Iyy)

2, where typicallyk = 0.04.
4) Non-maximum suppression.

In a W × H image, the first step requires2 × (W − 2) ×
(H−2) multiplications and additions of3×3 image patches
(counted as17 operations,9 for multiplication,8 for adding
the results). Here it is assumed thatIx andIy are calculated
with the help of3×3 Sobel masks. The second step involves
3 × (W − 2) × (H − 2) single pixel operations followed
by 3 × (W − 2) × (H − 2) patch multiplications (again17

operations). This is followed by7×(W−2)×(H−2) single
pixel operations. Nonmaximum suppression requires at least
(W−2)×(H−2) additional pixel operations. Altogether, the
above reasoning leads to an estimate of96×(W−2)×(H−2)
single pixel operations. This leads to:1, 789, 824 operations
for 160× 120 images,7, 265, 664 operations for320× 240
images, and29, 276, 544 operations for640× 480 images.

FAST [11] performs the following steps:

1) A corner test for each pixel in the image, involving a
decision tree that compares the values from a 16-pixel
ring around the center pixel with the value of the center
pixel. The test ascertains whether there is a group ofn
contiguous pixels in the ring that is brighter or darker
than the pixel center. A pixel from the ring can be
brighter (pring > pcenter+T), darker (pring < pcenter−T),
or similar (pcenter− T ≤ pring ≤ pcenter+ T).

2) For each corner, first a corner response function is
calculated. To find the corner strengthv in the online
implementations of FAST, a binary search is performed
to find the maximum thresholdTmax for which the
corner is still defined as a corner.

3) Non-maximum suppression.

The number of operations of FAST mainly depends on
image size and the values ofn andT , which influence the
number of pixel comparisons. For each pixel firstpcenter−T
and pcenter+ T are calculated (2 operations), and then the
decision tree performs a numberc of comparisons. For
FAST9 n = 9 and c = 2.26 on average [11]. This would
imply 4.26 (W − 6) (H − 6) operations. Since binary search
has an average complexity oflog2(N) − 1, with N = 256
in the case of the threshold, 7 operations are assumed for
the corner response calculation. Another 8 are used to do
the nonmaximum suppression of a point with an 8-pixel
neighborhood. So after corner detection, 15 operations are
performed per corner. WithC = 25 detected corners and
W ×H = 160×120, 25×15+4.26×154×114 ≈ 75, 164.
For 320 × 240 and 640 × 480 pixels, the estimates amount
to 313, 383 and1, 280, 573 operations, respectively.

ACT-CORNERmaximally performst times the steps:

1) Calculation ofIx, Iy at theA agent locations
2) Computation of the perceptron outputs

The first step uses Sobel masks and involves2 A multipli-
cations and additions of3× 3 image patches (17 operations
per patch). The second step involvesA times 153 multiplica-
tions, 150 summations, and 3 activation function evaluations
(estimated in total as310 operations). The total number of
operations is thent×A×344. The current setup witht = 15
andA = 25 would lead to129, 000 operations.

Although the actual computation times strongly depend
on the exact implementation and hardware, this analysis
indicates that the computation cost of the ACT-CORNER is
lower than the HARRIS algorithms by a factor of13.9, 56.3,
and226.9, for images of160× 120, 320× 240, 640 × 480
respectively. ACT-CORNER also requires fewer operations
than the FAST algorithm for images of320 × 240 and
640 × 480 pixels by a factor of2.4 and 9.9, respectively.

TABLE I

AVERAGE PROCESSING TIMES OF THEHARRIS, FAST, AND

ACT-CORNERALGORITHMS FOR DIFFERENT IMAGE SIZES.

160× 120 320× 240 640× 480

Laptop
Harris 3.47 ms 12.67 ms 46.46 ms
FAST 0.17 ms 0.84 ms 2.69 ms
ACT-CORNER 0.49 ms 0.78 ms 1.02 ms
DSP
ACT-CORNER 10 ms 12 ms 14 ms

Moreover the computational cost of ACT-CORNER does not
directly depend on image size as for the other two algorithms.
The number of required operations might increase linearly if
the number of agents or number of time steps is increased.
However, the algorithm scales rather well to larger images
with the same parameters.

B. Empirical comparison computational effort

For the empirical comparison of the computational effort,
C++ implementations of the three algorithms have been
compared on a laptop with an Intel Core i7 processor at2.00
GHz. The FAST-implementation is the one made available at
4, the Harris implementation is the one included in the open
source software package OpenCV5, while ACT-CORNER
has been implemented by the authors. Table I shows the aver-
age number of milliseconds spent by the three algorithms on
processing images of different sizes (results under ‘Laptop’).
The experimental results qualitatively correspond to the two
expectations from the complexity analysis. First, Harris’
method is by far slowest on all image sizes. Second, the
FAST corner detector is faster on the smallest image size than
ACT-CORNER and slower on larger image sizes, although
the difference is quantitatively smaller than expected. An
unexpected result is that the computation cost of the ACT-
CORNER slightly increases with the image size. This is due
to the fact that the usage of the same movement range on all
images implies the exhibition of a longer movement phase
before stopping, in order to traverse the larger texture-poor
areas experienced in larger images.

Finally, a C implementation of ACT-CORNER has been
made for the Digital Signal Processor (DSP) of the Sur-
veyor BlackFin camera system, which can be used on small
robotic systems. Table I shows the processing times of ACT-
CORNER for different image sizes (results under ‘DSP’).
The main observation here is that ACT-CORNER can be
run at an execution frequency of∼ 71 Hz – 100 Hz (faster
than the maximal image capture frequency). Please remark
that no DSP-specific optimizations of the code have been
performed, so further speed-ups are possible.

IV. PERFORMANCE COMPARISON ON
TIME-TO-CONTACT ESTIMATION

The computational efficiency of ACT-CORNER is only of
value if the corners are of sufficient quality for downstream

4http://www.edwardrosten.com/work/fast.html
5http://opencv.willowgarage.com/wiki/

vision processing. In this section, the performance of ACT-
CORNER is studied and compared with Harris and FAST in
the context of a Time-To-Contact (TTC) estimation task6.

A. Optic Flow Determination

The optic flow determination receives the corners found by
one of the three algorithms and tracks them to the next image
with the well-known Lucas-Kanade algorithm [4]. A naive
implementation would provide the optic flow vectors directly
to the TTC estimation algorithm. However, in order to obtain
accurate estimates at large TTCs, two additional measures
are taken: (1) unreliable optic flow vectors are discarded,
and (2) points are followed over time with a Kalman Filter.
The first measure involves tracking the features back from
the current frame to the past frame, and evaluating whether
they are sufficiently close to the original feature locations.
The second measure involves a motion model that assumes
the optic flow to remain constant over time.

B. Time-To-Contact Estimation Algorithm

When approaching an object, the expanding visual flow
provides a measure of the TTC: the distance to the object
divided by the approach velocity7. The algorithm used in
the experiments estimates the TTC by determining the diver-
gence of the optic flow field. It assumes (1) that the object is
predominantly planar, and (2) that camera rotations are either
not present or are accounted for by means of proprioception
(viz. derotation based on gyrometers).

In the explanation of the algorithm a pinhole model is
assumed, as in [8]. The following notation is used. Image
coordinates of an imaged pointP are denoted asp = (x, y),
optic flow as(u, v), and the spatial derivatives of optic flow
as ux, uy, vx, and vy. Translational velocity is expressed
as V = (Vx, Vy, Vz). The world point imaged on the
image center(0, 0), is namedPC . The distance toPC is
Z. The camera only provides information on the normalized
velocity: ϑ = (ϑx, ϑy, ϑz) = V/Z. Finally, the inclination
of the surface around pointPC is represented byzx, zy.

Assuming no camera rotation, we have from [8]:

uC = −ϑx, vC = −ϑy (2)

ux = ϑz + ϑxzx, vy = ϑz + ϑyzy (3)

uy = ϑxzy, vx = ϑyzx (4)

The divergence atpC can then be written as:

div(pC) = ux + vy = 2ϑz + ϑxzx + ϑyzy. (5)

6In computer vision, corner detectors are typically tested onmeasures
such as repeatability, i.e., how often the algorithm finds the same world point
in images from different angles and positions. Since ACT-CORNER does
not process the entire image, it is not to be expected that the same point will
be detected in both images. Moreover, repeatability is not a direct measure
of how well corners are suited for optic-flow-based downstream processing.
Therefore, repeatability tests seem less adequate than theproposed TTC
estimation tests for studying ACT-CORNER in a robotic context.

7Please remark that the TTC is only equal to the actual time remaining
until contact if the approach velocity remains constant.

90 80 70 60 50 40 30 20 10

−20

0

20

40

60

80

100

120

140

160

Time−To−Contact (frames)

E
st

im
at

ed
 T

im
e−

T
o−

C
on

ta
ct

 (
fr

am
es

)

Fig. 2. Box plots representing the estimated TTC distributions per time step for digital zoom approach sequences in the mostdifficult image set (indoor).
The time-to-contact decreases from 100 to 5 frames. The box plots illustrate the interquartile ranges. Red squares represent outliers.

The divergence is inversely related to the TTC (denoted as
τ). For example, in the case ofϑx = ϑy = 0:

τ =
1

ϑz

=
2

div(p)
, (6)

with τ the time at which the camera center will touch point
PC if the velocity Vz stays the same. With nonzeroϑxzx
or ϑyzy, the divergence can still be regarded reciprocal to a
time-to-contact, if the surface aroundP is assumed to extend
to the point in which it intersects the direction of motion.

As stated before, the algorithm employed here to estimate
the TTC assumes the object to be predominantly planar. It
estimates the parameterspu, pv of the equations:

u = uC + uxx+ uyy = (1, x, y)pu

T, (7)

v = vC + vxx+ vyy = (1, x, y)pv

T. (8)

Having the parameter vectorspu, pv permits
the calculation of the divergence and therefore
the TTC. Estimation of the parameters is done
with the help of the set of optic flow vectors
V = {(u1, v1, x1, y1), (u2, v2, x2, y2), . . . (uN , vN , xN , yN)}
found as described in the Subsection IV-A. The algorithm
finds least-squares solutions to the systems:

u = Apu, v = Apv, (9)

where u consists of allui, v consists of allvi, and A

is a matrix with rows(xi, yi, 1). In order to be robust to
both noise and deviations from the planar assumption, a
RANSAC procedure is used for both fits (using 20 fits of 5
flow vectors). The parameters with lowest error on all optic
flow vectorsV are selected. If there are too few points or if
all the points are colinear, the TTC is assumed to be 0.

C. Image Zooms

In order to generate a large number of tests while still
having access to ground-truth TTC values, experiments have
been performed on digital image zooms. Five image sets have
been employed, mentioned here with the number of resulting
image sequences: (1) moon surface images (30 sequences),
(2) indoor images (62 sequences), (3) images of the NASA
Mars rover Opportunity (27 sequences), (4) urban outdoor

TABLE II

ACCURACY ON ZOOM SEQUENCES, |τ − τ̂ | (IN FRAMES).

Harris FAST ACT-CORNER

Moon surface 7.9 (±25.7) 14.1 (±60.1) 13.5 (±57.3)
Indoor 19.4 (±67.6) 34.3 (±76.9) 27.5 (±99.7)
Opportunity rover 8.8 (±36.4) 10.5 (±14.9) 8.3 (±40.8)
Urban outdoor 8.4 (±34.1) 15.9 (±43.4) 10.8 (±50.4)
Forest outdoor 6.8 (±20.8) 13.5 (±48.5) 9.4 (±41.7)

images (106 sequences), and (5) forest outdoor images (66
sequences). The generated images have dimension160×120.
A constant velocity approach is simulated by the zoom, with
the TTC decreasing from 100 frames to 5 frames. The results
can be seen in Table II. Three main observations can be made
from the table. First, the Harris corner detector overall leads
to the most accurate downstream vision processing results:it
has the lowest mean absolute estimation errorτ − τ̂ on four
out of five sets. Second, ACT-CORNER achieves slightly
more accurate results than FAST and slightly lower mean
error than Harris on the Opportunity image set. Its standard
deviation is a bit higher than that of the other methods. Third,
all three methods obtain the highest error on the indoor image
zooms. The reason for this is that indoor environments can
have too little texture to reliably determine optic flow and
consequently TTC (cf. [6]).

To further clarify the results in Table II, Figure 2 shows the
least accurate results of ACT-CORNER (indoor image set).
The box plots illustrate the interquartile ranges of the TTC
estimate (̂τ) distribution per time step of the approach. The
whiskers extend to the interquartile ranges±1.5 times their
difference. The crosses illustrate ‘outliers’, i.e., estimates
that are further away from the interquartile ranges than the
whiskers. Almost allτ̂ -distributions are close to the true
TTC, with the box plots forming a line decreasing from
∼ 100 to ∼ 5. There is a considerable number of outliers
though, which are mainly caused by a lack of texture. A
subsidiary observation is that the first few time steps have a
larger estimate variance than the rest of the approach. This
is due to the initialization of the Kalman filtering. Finally,
please note that results could further be improved by filtering
the TTC estimates over time (e.g., rejecting outliers).

70 70.5 71 71.5 72 72.5 73 73.5 74 74.5
−100

−80

−60

−40

−20

0

20

40

Time (s)

T
im

e−
T

o−
C

on
ta

ct
 (

s)
Fig. 3. Left: Parrot AR drone during the experiment.Right: TTC estimates (blue dashed line) and sonar-based TTC (green line) over time, with
corresponding images from the onboard downward pointing camera. The drone first recedes from the moon surface posters and then approaches them.

D. Robotic Experiments

In this Subsection, the TTC estimation algorithm using
ACT-CORNER is applied to a real robotic platform, im-
plying perturbing factors such as image noise and motion
blur. To this end, experiments are performed with a Parrot
AR drone, which is equipped with a downward-pointing
camera (sending images at 20 frames per second) and sonar
sensor. Given a smooth surface, the sonar sensor provides
reliable measurements of the drone’s altitude over time.
These measurements can be used to determine a ‘ground-
truth’ TTC. We assume though that the sonar cannot reliably
measure TTCs outside the interval of[−1000, 1000] frames,
and saturate the TTC outside that interval.

1) Experimental Setup:The TTC-measurements are per-
formed while the experimenter decreases and increases the
drone’s altitude. The drone sends its sonar measurements
and bottom camera images to the ground station, where all
vision processing is performed. ACT-CORNER is used in
combination with the TTC estimation algorithm. During the
robotic experiments, optic flow is not tracked back from the
current to the past image, but all optic flow vectors are input
to the divergence determination. Another notable difference
with the image zoom experiments is that the TTC estimates
are low-pass filtered over time.

2) Results:Three experiments have been performed with
the drone flying above surfaces with different textures: a
poster with a moon surface, an empty but slightly textured
floor, and the same floor but with the AR drone helipad
positioned below the drone. In all cases, the estimated TTC
corresponds well to the sonar-based TTC, with a median
absolute error of0.4s – 0.7s during vertical maneuvers.
The performance of the TTC estimation is illustrated in
Figure 3. It shows the estimated TTC (blue dashed line)
and the sonar-based TTC (green line) over time when the
drone moves first away and then towards a poster with a
moon surface. Below, images are shown at different times.
The TTC estimates are close to the sonar-based TTC, except
when the movement of the drone reverses. Large positive
or negative TTC-values imply slow movements, which are
hard to estimate. In addition, when the movement reverses
the actual TTC has a singular point: it instantly goes from

−∞ to +∞. The filtering results in a delayed response to
this singularity and some erroneous TTC-values.

V. CONCLUSIONS

We conclude that ACT-CORNER successfully detects cor-
ners suitable for optic-flow based time-to-contact estimation.
The method is computationally efficient, performing far
fewer operations than the Harris corner detector on any
image size and performing fewer operations than FAST on
image sizes larger than320×240. Finally, experiments with
a Parrot AR drone show that the TTC estimates based on
ACT-CORNER correspond well to sonar-based estimates.

ACKNOWLEDGMENTS

We thank Laurens van der Maaten for proof-reading and
Paul Gerke for assisting in the robotic experiments.

REFERENCES

[1] T.L. Arnow and A.C. Bovik. Foveated visual search for corners.IEEE
Transactions on Image Processing, 16(3), 2007.

[2] D. H. Ballard. Animate vision.Art. Int., 48(1):57–86, 1991.
[3] Antoine Beyeler, J.-C. Zufferey, and D. Floreano. Optipilot: control of

take-off and landing using optic flow. InEuropean Micro Air Vehicle
conference and competitions (EMAV 2009), 2009.

[4] Jean-Yves Bouguet. Pyramidal implementation of the Lucas Kanade
feature tracker. description of the algorithm, 2000.

[5] F. Expert, S. Viollet, and F. Ruffier. Outdoor field performances
of insect-based visual motion sensors.Journal of Field Robotics,
28(4):529–541, 2011.

[6] W.E. Green and P.Y. Oh. Optic flow based collision avoidance on a
hybrid MAV. IEEE Rob. and Autom. Magazine, 15(1):96–103, 2008.

[7] C. Harris and M. Stephens. A combined corner and edge detector. In
4th Alvey Vision Conference, pages 147–151, 1988.

[8] H.C. Longuet-Higgins and K. Prazdny. The interpretation of a moving
retinal image.Proceedings of Royal Society, London B, 208:385–397,
1980.

[9] S. Nolfi. Power and the limits of reactive agents.Neurocomputing,
42(1–4):119–145, 2002.

[10] S. Nolfi and D. Floreano. Evolutionary Robotics: The Biology,
Intelligence, and Technology of Self-Organizing Machines. MIT Press
/ Bradford Books, Cambridge, MA, 2000.

[11] Edward Rosten and Tom Drummond. Machine learning for high-
speed corner detection. InEuropean Conference on Computer Vision,
volume 1, pages 430–443, May 2006.

[12] Edward Rosten, Reid Porter, and Tom Drummond. Faster and better:
A machine learning approach to corner detection.IEEE Trans. Pattern
Analysis and Machine Intelligence, 32:105–119, 2010.

[13] V. Trianni and S. Nolfi. Engineering the evolution of self-organizing
behaviors in swarm robotics: A case study.Artificial Life, 17(3):183–
202, 2011.

