
Sub-sampling:

Real-time Vision for Micro Air Vehicles

G.C.H.E. de Croon1, C. De Wagter2, B.D.W. Remes2,
and R. Ruijsink2∗

Abstract

Small robotic systems such as Micro Air Vehicles (MAVs) need
to react quickly to their dynamic environments, while having only a
limited amount of energy and processing onboard. In this article, sub-
sampling of local image samples is investigated as a straightforward
and broadly applicable approach to improve the computational effi-
ciency of vision algorithms. In sub-sampling only a small subset of the
total number of samples is processed, leading to a significant reduction
of the computational effort at the cost of a slightly lower accuracy. The
possibility to change the number of extracted samples is of particular
importance to autonomous robots, since it allows the designer to se-
lect not only the performance but also the execution frequency of the
algorithm. The approach of sub-sampling is illustrated by introducing
two novel, computationally efficient algorithms for two tasks relevant
to MAVs: WiFi noise detection in camera images and onboard horizon
detection for pitch and roll estimation. In the noise detection task,
image lines and pixel pairs are sampled, while in the horizon detection
task features from local image patches are sampled. For both tasks
experiments are performed and the effects of sub-sampling are ana-
lyzed. It is demonstrated that even for small images of size 160× 120
speed-ups of a factor 14 to 21 are reached, while retaining a sufficient
performance for the tasks at hand.

∗(1). Advanced Concepts Team, European Space Agency, (2). Micro Air
Vehicle lab, Control and Simulation, Delft University of Technology. Contact:
guido.de.croon@gmail.com

1

1 Introduction

Achieving autonomy of small robotic systems is one of the most challenging
problems in the field of robotics. Small and light-weight robots can carry
little energy, little processing, and few and inaccurate sensors. Nonetheless,
in many cases the robots will have to react to their environment in real-time.

In this article, we focus on vision-based autonomous flight of Micro Air
Vehicles (MAVs) as a case in point. An important requirement of the in-
volved vision algorithms is that they should be computationally efficient.
Since state-of-the-art vision algorithms are typically more directed towards
performance than speed, it is desirable to find structural means for reducing
their computational effort.

Sub-sampling is a broadly applicable method for reducing the computa-
tional effort of vision algorithms. If the algorithm involves the extraction of
local image samples, sub-sampling implies that only a small subset of all the
possible samples is used for the task. Typically, sub-sampling is associated to
image resizing, in which a smaller image is constituted by sampling the pixels
on an evenly spaced grid in the original image. Image resizing can lead to a
considerable efficiency gain, but is limited by the amount of textural detail
necessary for the vision task. Too small an image size may lead to the loss
of important textural details.

In order to achieve a higher computational efficiency while retaining tex-
tural details, algorithms can extract local image samples larger than a single
pixel from the original image. In particular, many studies focus on active
sub-sampling, in which the information from the current sample is used to
select the next [3, 31, 21, 43, 19, 30, 47, 11]. This can lead to large compu-
tational efficiencies, but also often creates a challenging Partially Observable
Markov Decision Problem (POMDP). Such a POMDP is currently difficult
to solve, and the mentioned studies either make strong assumptions on the
task [21] or have to train a model for each different task [19].

Remarkably little vision research has been reported on plain passive sub-
sampling. Two ways of passive sub-sampling are (1) random sampling, and
(2) grid sampling. Random sampling has proven to be very effective to
ameliorate the efficiency of machine learning techniques (cf. [32, 22, 2, 12,
34, 6]). In the context of vision, its application is more rare, although there
are some examples in which the random sampling plays a central role (cf.
[48, 42, 4, 16]). Sampling on a fixed grid is common in the sense that it
is equal to image resizing if the granularity of textural features used by the

2

vision algorithm remains at the pixel level (cf. [44]). However, the extraction
of larger textural features located on a grid in the original image is more rare.
Both passive sampling methods can be applied to a large group of algorithms
that extract local features from images.

The main contribution of this article is to advance computationally
efficient vision algorithms for autonomous robots by making a case for the
strategy of passive sub-sampling. In sub-sampling, the number of samples
permits a gradual exploration of the trade-off between the vision algorithm’s
accuracy and its computational efficiency. This property can be of particular
importance for autonomous robots. Namely, it allows the execution of the
algorithm at a required minimal frequency on almost any kind of processor.
The price paid is a lower accuracy. However, as will be shown in this article,
the method of sub-sampling has a graceful decay - allowing large gains in
computational efficiency at the cost of only little accuracy. probability theory.

We illustrate the potential importance of sub-sampling for the autonomy
of small robotic systems by performing two separate case studies. This leads
to the two sub-contributions of this article: (1) an efficient algorithm for
offboard noise detection in images transmitted via an analog connection, and
(2) an efficient algorithm for onboard horizon detection in images for esti-
mating the pitch and roll of an outdoor flying MAV 1. Although the domains
of the case studies are rather different, they both allow the investigation
of sub-sampling. Most importantly, in both case studies it is demonstrated
that a significantly higher computational efficiency comes at the cost of only a
moderate loss in accuracy. Moreover, in both case studies the basic sampling
strategies of random and grid sampling are compared. Finally, preliminary
experiments are performed per case study to investigate the effects of selective
sampling, in which not all of the image coordinates handed to the algorithm
lead to the actual extraction of a sample. Selective sampling is shown to
further reduce the number of extracted samples for a given accuracy.

The remainder of the article is organized as follows. In Section 2, we
study the noise detection task. Subsequently, in Section 3, we investigate
the horizon detection task. The usefulness of the sub-sampling approach for
robotics is discussed in Section 4. Conclusions are drawn in Section 5.

1Both algorithms are publicly available at http://www.bene-guido.eu/.

3

2 Noise Detection

A well-known problem in the area of robotics is the noise in images trans-
mitted by analog cameras. Besides thermal and white noise, images can also
be corrupted by other types of noise. Often the cameras transmit on the
2.4 GHz channel, which is also used by WiFi. As a consequence, structured
noise bands such as the one on the left in Fig. 1 can perturb the images.
In addition to WiFi noise, sometimes the image receiver loses track of the
image’s start and end point, leading to a black bar that travels through the
image with the top of the image being shown below the bar. It is needless
to say that such noise-corrupted images are disastrous for many vision algo-
rithms. While for many MAVs it is currently possible to avoid such noisy
images by employing onboard vision processing (e.g., [9, 5, 37]), there are
still platforms for which this is not possible due to weight restrictions. Ex-
amples of systems that currently still rely on analog transmission include
flapping wing MAVs such as the recently introduced Nano Hummingbird of
Aerovironment2 and the DelFly II and DelFly Micro of Delft University of
Technology [15]. As an illustration, the DelFly Micro weighs 3.07 grams,
which implies that carrying a camera and transmitter is already a significant
challenge. Successful noise detection would be a valuable asset for MAVs
using analog transmission.

Figure 1: Example noisy / bad images. Left: WiFi transmits on the same
frequency as the analog camera and introduces noise especially in a horizontal
band. Right: the receiver loses track of the start and end point of the image.

Here, an algorithm is proposed to detect noisy lines as those in Figure 1.
The algorithm first converts the images to grayscale. Then it exploits the fact

2http://www.avinc.com/nano

4

that subsequent pixels in noise-free image lines are normally well-correlated,
while noisy lines have unrelated pixel values. The full-sampling version of
the noise detection algorithm would scan each line in the image from left to
right, while calculating the average correlation coefficient r between all pairs
of subsequent pixels3 vx, vx+1:

r(vx, vx+1) =
cov(vx, vx+1)

√

cov(vx, vx)cov(vx+1, vx+1)
, (1)

where:
cov(a, b) = E[(a− a)(b− b)], (2)

with a and b the sample means of stochastic variables a and b. Finding
multiple contiguous lines that have either a low correlation coefficient (lower
than a threshold ϑr) or all black pixels is a strong indication of WiFi noise
or black bars, respectively. An image is classified as noisy, if the number of
noisy lines exceeds the threshold ϑl.

The computational complexity of the algorithm is approximately:

C ≈ H(Wc), (3)

where H is the number of image lines (height), W the number of pixels
in an image line (width), and c is a constant representing the number of
calculations performed per pixel in an image line.

The algorithm can be made computationally more efficient by employing
sub-sampling. In particular, there are two places in the algorithm where
sampling can save on computation. First, it can be applied to the selection
of image lines. Instead of evaluating the correlation coefficient in every line,
the algorithm can evaluate a limited number of lines s < H . If a line is
considered noisy, the algorithm evaluates the contiguous lines to verify that
it really concerns WiFi noise. As soon as the threshold number of noisy lines
ϑl is reached, the algorithm stops evaluating the image (in the experiments,
ϑl = 4). Second, sub-sampling can be applied to the calculation of the
correlation coefficient of a single line. The standard evaluation will make two
complete passes over the image line, one for determining the average pixel
value, and one for determining the covariances. Both these passes could
be shortened to only a part of the line n < W for further computational

3This implies that x ranges from the first pixel to the penultimate pixel in an image
line.

5

efficiency. How much of the line is evaluated can be a fixed quantity or can
be based on the observed pixels along the way.

In the following, first the experimental setup is discussed (Subsection
2.1). Afterwards, the sampling of image lines is investigated (Subsection
2.2), then the sampling of pixels in a line (Subsection 2.3), and finally the
combination of the two (Subsection 2.4). The context of the investigation is
formed by noise detection experiments on a data set of images made onboard
MAVs employing analog 2.4GHz cameras. The experimental results will
show the effect sub-sampling has on the computational efficiency and the
classification performance of the noise detection algorithm. The performance
of the algorithm is compared to the state-of-the-art (Subsection 2.5).

2.1 Experimental setup noise detection

The images used for the noise detection experiment come from two MAVs in
various indoor environments with varying light conditions. Some images have
been captured onboard a blimp, but most images come from the flapping wing
MAV DelFly II. We used 100 ‘training’ images to select the thresholds used
in the algorithm, ϑr = 0.70 and ϑl = 4. A separate collection of test images
is used to evaluate the algorithm’s classification performance. The test set
contains 84 noise-free images and 97 noisy images. Most of the images have
been captured with a color camera. These images are converted to gray-scale
for the experiment. The image size is 320×240 pixels. All MATLAB-scripts
and a reduced image set can be downloaded from http://www.bene-guido.

eu/ for replication of the results mentioned in this section.

2.2 Sampling of image lines

Before we show the computational effort and classification performance of
the noise classifier on the test set, a brief analysis is performed that provides
an idea on what the effects will be of sampling the image lines.

2.2.1 Preliminary analysis

The starting points of the analysis are that (1) the number of lines affected
by both WiFi noise and black bars is rather constant, and (2) the noisy lines
are contiguous in the image. The first point allows us to assume a fixed
probability for a line being noisy, while the second point allows us to assume

6

that the detection of only one of the noisy lines is sufficient, since the rest of
the noise will be adjacent to that line (This may take a few extra samples
though).

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of sampled image lines

P
ro

b
ab

ili
ty

 o
f

m
is

si
n

g
 n

o
is

e

With replacement
Without replacement
Grid 1 pixel
Grid 5 pixels
Grid 20 pixels
Without replacement − grid 5 pixels

Figure 2: The probability of missing the WiFi noise when sampling image
lines with the following strategies: random sampling with replacement (blue
dashed line) and without replacement (green solid line), grid sampling (pur-
ple) with a 1-pixel grid (dotted), 5 pixel grid (solid), and a 20 pixel grid
(dashed), and random sampling of 5 pixel grid lines (green dashed line).

Let us suppose that the number of lines affected by the noise is on average
20 for images of size 320×240 pixels. We investigate three different sampling
strategies, which are explained below.

The first sampling strategy is random sampling. In random sampling, the
probability of selecting a noisy line with uniform selection is pn = 20/240 =
1/12, making the probability of missing it pm = 1−pn = 11/12. When taking
s independent samples with replacement, the probability of not finding any
of the noisy lines is p

(s)
m . If a quarter of the lines is sampled, this probability

is pM = p60m ≈ 0.54%. If sampling is performed without replacement, the

probability of missing all noise-affected lines is smaller: pM = Πs
i=1

(220−(i−1))
240

,
which for a quarter of the lines gives pM ≈ 7.46 10−5%. Figure 2 shows
the number of line samples s vs. the probability of not finding any of the
noisy lines with replacement (dashed blue line) and without replacement
(solid green line). In both curves, adding more samples has an increasingly
smaller effect on the probability of missing the WiFi noise, suggesting that
a relatively small number of samples may suffice. Of course, the difference
between sampling with and sampling without replacement depends on the

7

total number of samples, with equality when the total number of possible
samples goes to infinite. Given that the noise-detection task has a relatively
small total number of S = 240 samples, only sampling without replacement
will be investigated.

The second sampling strategy is grid sampling, in which there is a fixed
number of image lines between each sample. When sampling on a grid from
the top of the image to the bottom, the number of samples before a detection
depends on the location of the noise band. Assuming that the entire noise
band is present in the image (20 lines) leads to the following probabilities. If
the grid starts at image line 5 and has a step size of 5 pixels, the probability
of a miss at the first sample is equal to the probability that the noise starts
somewhere after the fifth line (pM = 215/220 ≈ 0.977). The probability of
a miss at the second sample (image line 10) is equal to the probability that
the noise starts after the second image line (pM = 210/220 ≈ 0.955). The
probability then linearly decreases further to 0. For a 5 pixel grid, pM = 0
at 44 line samples. The above reasoning is valid as long as the step size is
smaller than or equal to the number of lines affected by the noise. For larger
step sizes, there will be a remaining probability for a miss. Figure 2 shows
the corresponding probabilities in purple for a grid with step size 1 (dotted),
5 (solid), and 20 (dashed-dotted).

From the analysis above one may conclude that at larger numbers of sam-
ples (smaller grid step sizes), a grid is likely to be less efficient than random
sampling since the probability of missing the noise is higher. At smaller
numbers of samples, grid sampling is more efficient than random sampling of
image lines. This observation leads to the third sampling strategy: random
grid sampling. In Figure 2 the green dashed line shows the probability of
missing the noise if the image lines of a 5 pixel grid are randomly selected
without replacement. Random sampling of grid lines results in a faster de-
crease of pM than sequential sampling of grid lines. Please remark that it
only reduces pM at step sizes smaller than the number of noisy lines. At a
step size equal to this number (assumed to be 20 in this analysis), both give
equal results.

2.2.2 Results image line sampling

The three sampling strategies are applied to the noise detection task with
a maximal height portion ranging from 0.05 to 1 with steps of 0.05. The
actual height portions examined by the strategies are typically lower, since

8

the sampling immediately stops if the number of noisy lines exceeds ϑl. The
line sampling strategies with a random component are applied ten times to
the test set. The results of the experiments are shown in Figure 3. The left
part of Figure 3 shows the relation between the height portion examined (the
sampled image lines divided by the image height) and the processing times
of our MATLAB-scripts on an Intel Core i7 2.00 GHz processor for the case
of random sampling (solid), grid sampling (dotted), and random sampling of
grid lines (dashed). The right part of Figure 3 shows the relation between
the height portion and the True Positive ratio (proportion of noisy images
classified as noisy - blue) and False Positive ratio (proportion of noise-free
images classified as noisy - red)4. Again random sampling has solid lines,
grid sampling dotted lines, and random grid sampling dashed lines.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.02

0.04

0.06

0.08

0.1

0.12

Height portion

P
ro

ce
ss

in
g

 t
im

e
(s

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Height portion

F
P

, T
P

Figure 3: Results of sampling the image lines with random sampling (solid),
grid sampling (dotted), and random grid sampling (dashed). Left: average
computation time per image (and standard error bars) for different height
portions. Images have size 320× 240. Right: True Positive ratio (blue) and
False Positive ratio (red) for different height portions.

The results shown in Figure 3 lead to three main observations. First, the
computational effort increases roughly linearly with the height portion, as
to be expected from Equation 3. The computational effort of the strategies
that use random numbers is slightly higher than that of grid sampling due
to the generation of these numbers. Grid sampling is the only one to reach a

4Please note that the performance of a classification method is also sometimes expressed
in terms of its sensitivity and specificity. The first is equal to the true positive ratio TP ,
while the latter is equal to 1− FP , where FP is the false positive ratio.

9

height portion of 0.74, since it takes longer for the method to find the noise
in a noisy image (as was expected from the analysis in Subsection 2.2.1).

Second, for all sampling strategies, increasing the height portion has the
largest effect on the TP ratio for height portions lower than 0.20. For all
methods, the FP ratio is constant over all height portions, while the TP ratio
hardly rises after 0.20. In other words, most of the performance is reached by
a relatively small number of samples while leading to a quick execution of the
algorithm. For example, random grid sampling obtains a TP ratio of 0.78 at
a height portion of 0.19, achieving a speed up of a factor ∼ 5 at the cost of
only 0.02 in TP ratio.

Third, randomly sampling the image lines in a grid gives the best results:
it results in the highest TP ratio for all given height portions. While (se-
quential) grid sampling still performs almost as good, sampling at random
locations significantly diminishes the TP ratio for small height portions.

2.3 Sampling of pixels in an image line

2.3.1 Fixed width portion

As explained, the full sampling algorithm makes two passes per image line:
one for calculating the means of the pixel values vx and vx+1, and a second for
estimating the covariances necessary for determining r(vx, vx+1): cov(vx, vx),
cov(vx+1, vx+1), and cov(vx, vx+1)

5. Sub-sampling can be applied to both
passes, resulting in stochastic estimates of the mean and covariances.

In the experiments, four pixel sampling strategies are investigated. The
first and the second sampling strategies extract a sequence of pixels from the
image line. ‘Random contiguous sampling’ of a width portion of 0.05 signifies
that sp = 16 subsequent pixels are extracted from a random location in the
line in order to calculate r. In ‘fixed contiguous sampling’, the first sp pixels
in the image line are sampled. The third and fourth sampling strategies
extract separate pixel pairs from the image line. In ‘random pair sampling’
sp pixel pairs are extracted from random locations in the image line without
replacement. In ‘grid pair sampling’, the sp pixel pairs are extracted at the
locations of an evenly spaced grid.

The four pixel sampling strategies are applied to the noise detection task,
while having the width portions vary from 0.05 to 1 with steps of 0.05. There

5In order to gain computational efficiency, one can assume vx = vx+1 and cov(vx, vx) =
cov(vx+1, vx+1).

10

is no sub-sampling of image lines, implying a (maximum) height portion of
1. The pixel sampling strategies with a random component are applied ten
times to the test set. The results are shown in Figure 4. The left part of
Figure 4 plots the width portions vs. the processing time, while the right part
of the figure plots the width portions vs. the FP and TP ratios. Random
contiguous sampling is indicated with solid lines, fixed contiguous sampling
with dotted lines, random pair sampling with dashed-dotted lines, and grid
pair sampling with dashed lines.

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

Width portion

P
ro

ce
ss

in
g

 t
im

e
(s

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Width portions

F
P

, T
P

Figure 4: Results for random contiguous sampling (solid), fixed contigu-
ous sampling (dotted), random pair sampling (dotted-dashed), and grid pair
sampling (dashed). Left: average computation time per image for different
width portions, for full sampling of the image lines. Right: True Positive
ratio (blue) and False Positive ratio (red) for different width portions while
fully sampling the image lines.

Figure 4 leads to three main observations. First, again as expected, for
all methods the computational effort increases roughly linearly with the eval-
uated width portion. Second, for the contiguous sampling methods taking
smaller width portions leads to higher TP and FP ratios. This means that
they classify images more often as noisy. For the methods that sample pixel
pairs, smaller width portions especially lead to a lower TP ratio. At first
sight, the pixel pair methods look preferable, especially at lower width por-
tions. However, it is interesting to note that the effect of contiguous pixel
sampling is contrary to the effect of reducing the height portions (Figure 3),
which may be of importance when applying random sampling both to the
image and the width portions (see Subsection 2.4). Third, comparing the
sampling schemes in terms of processing time leads to the conclusion that

11

the pair sampling methods take more time than the contiguous sampling
methods. This is mainly due to a lower number of false positives (the sam-
pling of image lines stops if the noise threshold ϑl is reached). In addition, the
methods involving random numbers take more time than their counterparts.

2.3.2 Selective sampling: variable width portion

Instead of taking a fixed number of samples from an image line, a selective
sampling scheme can be employed in which the number of evaluated samples
depends on the image line. Such a scheme should focus most of the sampling
on the image lines for which it is necessary. One can achieve this by using
probabilistic bounds. For example, Hoeffding’s inequality [28] provides a
probabilistic bound on the absolute difference between the sample average
of independent identically distributed variables and the actual mean. Let
{X1, X2, . . . , XN} a set of i.i.d. variables with range R and mean µ and let
their sample average XN = 1

N

∑N

i=1Xi. Hoeffding’s inequality then states
that with probability at least 1− δ:

|XN − µ| ≤ R

√

log(2/δ)

2N
, (4)

The Hoeffding inequality is very general, but has as disadvantage that it
scales linearly with R and cannot always provide sufficiently tight bounds.
If there is a known bound on the variance, Bernstein’s inequality can be
used instead, resulting in significant improvements if this variance is small
compared to the range R. Unfortunately, often there are no tight a priori
bounds on the variance.

In [2] Bernstein’s inequality is used to derive the empirical Bernstein
bound, which makes use of the empirical standard deviation. The bound
states that with probability at least 1− δ:

|XN − µ| ≤ σN

√

2log(3/δ)

N
+

3Rlog(3/δ)

N
, (5)

where σN is the empirical standard deviation of {X1, X2, . . . , XN}: σN
2 =

1
N

∑N

i=1(Xi −XN)
2.

Assuming cov(vx, vx) ≈ cov(vx+1, vx+1) and vx ≈ vx+1 to be known or
estimated, the correlation value r (Eq. 1) after sampling N pixel pairs in
the line can be interpreted as XN in Eq. 5. As a consequence, the empirical

12

Bernstein bound of rN can be calculated and compared with the threshold
value ϑr. If the lower bound is higher than ϑr or the upper bound is lower
than ϑr, sampling can be stopped.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Width portion

F
P

, T
P

Figure 5: True Positive ratio (blue) and False Positive ratio (red) for different
width portions for full sampling of the image height. The dashed lines with
circle markers indicate the TP and FP ratio for empirical Bernstein sampling
in which the bounds are applied symmetrically, the solid lines and diamond
markers represent the results for an asymmetric application of the bounds.
The grey lines are the TP and FP ratios for random pair sampling and grid
pair sampling.

When employing the empirical Bernstein bound, one hopes to attain a
higher performance with the same number of samples. Namely, the samples
should be used for the image lines in which they matter most. However,
applying the bound in a straightforward manner to the noise detection task
does not give the expected results. This can be seen by looking at the
dashed lines with circle markers in Figure 5, in which the results are plotted
for δ = {0.99, 0.95, 0.90, 0.80, 0.70, 0.60, 0.50, 0.40, 0.30, 0.20, 0.10, 0.05, 0.01}.
In general, for a given number of sampled image lines, both the true posi-
tives and false positives are higher than those for fixed width portions. For
reference, Figure 5 shows the results of fixed width portion sampling of indi-
vidual pixel pairs with grey lines (see also Figure 4). The cause of the worse
performance is the following: the δ-parameter determines the probability of

13

misclassifying an image line, influencing both false positive and false negative
classifications of image lines. Analysis shows that with the empirical Bern-
stein bound there are many false positive classifications of image lines and
hardly any false negatives. In addition, for the noise detection task the im-
pact of the false positive lines is larger than that of the false negatives, since
only ϑl (false) positive line classifications suffice for classifying the image as
noisy. This effect greatly influences the results especially if many image lines
are evaluated. Choosing a lower δ reduces the number of false positive line
classifications, but also increases the number of samples evaluated.

The skewed proportions of false positive and false negative classifications
of image lines suggest the following remedy. The bound could be applied
asymmetrically: the algorithm should only stop sampling if its lower bound
is higher than ϑr, and not when its upper bound is lower than ϑr. Figure 5
shows the FP and TP ratios for the asymmetric application of the bound
with solid lines and diamond markers. These results compare favorably with
those when using fixed width portions (see the grey lines in Figure 5). The
asymmetrically applied empirical Bernstein bound results in TP and FP ra-
tios comparable to those at a fixed width portion of 1, while only sampling on
average a width portion of 0.25 (δ = 0.80).

Please note that the results for the asymmetric application of the empir-
ical Bernstein bound form almost straight lines, implying that the resulting
TP and FP ratio hardly depend on δ. Analysis of the results show that in-
creasing δ from 0.01 to 0.99 only results in a few more false negatives (noisy
lines classified as clean). On the level of images, these few more line mis-
classifications have no effect on the TP and FP ratio. The fact that there
are not more false negatives can be explained by the bound not converging
to 0 when δ converges to 1. Instead, Equation 5 shows that it converges to

σN

√

2log(3)
N

+
3Rlog(3)

N
. Apparently this bound still ensures a safe enough

margin for the noise detection task.
A last remark on the empirical Bernstein bound is that its calculation

requires processing time as well. Therefore, in a final implementation it
would be good (as in [34]) to make use of geometric calculation of the bounds
(with increasing spaces in between calculations).

14

2.4 Combined sampling of lines and pixels

Finally, the sampling of image lines and pixels in an image line can be com-
bined. The best results were obtained with random grid sampling of image
lines and fixed contiguous sampling of pixels. Figure 6 shows multiple 3D-
plots, with the height portion on the x-axis, the width portion on the y-axis,
and respectively the TP ratio, FP ratio, and mean processing time on the
z-axis.

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0.5

0.6

0.7

0.8

0.9

1

Width portions
Height portions

T
P

 r
at

io

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1
0

0.5

1

Width portions

Height portions

F
P

 r
at

io

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.02

0.04

0.06

0.08

0.1

Width portions
Height portions

P
ro

ce
ss

in
g

 t
im

e
(s

)

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Figure 6: The relation between the investigated height portion, width por-
tion, and: TP ratio (top left), FP ratio (top right), mean processing time
(bottom).

The selection of the width portion and height portion used in the algo-
rithm depends on the demanded performance and execution time / frequency.
For example, in the autonomy experiments performed with the DelFly II, one
should not want an FP ratio higher than 0.10, since too many images are
then discarded. In addition, the execution should be so fast that it leaves
room for other computer vision algorithms to be run in parallel. So let’s pre-
sume a demanded execution frequency ≥ 100 Hz. One of the settings that

15

satisfies these demands is a height portion of 0.10 and width portion of 0.40,
with a TP ratio of 0.82, an FP ratio of 0.04 and an average processing time
of 0.0060s (execution frequency of ∼ 167 Hz). A few results of this setting
are shown in Figure 7. The green lines are sampled lines that were found to
contain no noise, the red lines are classified as noisy. The right image shows
a false positive: an image labeled as a noiseless image that was classified as
noisy by the algorithm6. Zooming in on the image shows that the ‘noisy’ lines
indeed contain some textural artifacts, but not strong enough to be labeled
as noisy. Please note that a full sampling scheme would have implied a TP
ratio of 0.80, an FP ratio of 0.01, and a processing time of 0.085 s (execution
frequency of ∼ 12 Hz). As a consequence of sub-sampling, a speed-up of ∼ 14
is reached with as consequence slightly more positive classifications. The FP
ratio increases with 0.03 while the TP ratio increases with 0.02 in comparison
to full sampling.

Figure 7: Noise detection results with a height portion of 0.10 and width
portion of 0.40. The pixels sampled by the noise detection algorithm are
colored. Green pixels in an image line imply that subsequent pixels correlated
well, i.e., that the image lines were found to contain no noise. Red pixels
did lead to a classification of the image line as noisy. Left: a true positive.
Center: a true negative. Right: a false positive.

2.5 Comparison with state-of-the-art

Of course, the algorithm’s efficiency is only interesting if its performance is
reasonable in comparison with existing methods. Therefore, the performance

6In the text, ‘labeling’ is used for the process in which a human assigns ground truth
values to instances. The computer then tries to match the labels by ‘classifying’ the
instances in an automated manner.

16

of the resulting efficient noise detection algorithm is compared with the state-
of-the-art in the literature. Byrne and Mehra [7] employ a supervised learning
approach that consists of two stages. In the first stage the most noisy part of
the image is selected. In the second stage various features are extracted from
the selected image part (a horizontal band in the image). For the first stage,
the entire image is filtered with steerable filters. The second stage involves
features such as the principal components of a CbCr-histogram and statistics
on the calculated filters (mean, standard deviation, etc.). The algorithm
of [7] is applied to the same MAV data set as the sub-sampling algorithm.
Since it concerns a supervised algorithm, a 10-fold test is performed with the
images. This leads to a performance of TP = 0.76 (σ = 0.18) and FP = 0.23
(σ = 0.21). These results are slightly worse than the results reported in [7],
which was TP = 0.81 for FP = 0.10. Differences may be due to the different
data set, or slight differences in implementation. The processing time of our
implementation of the method in [7] is on average 0.11 s per image7. This
corresponds to an execution frequency of ∼ 9.1 Hz.

In summary, sub-sampling leads to a speed-up of a factor ∼ 14, resulting
in an algorithm that can execute at a frequency of 167 Hz, while performing at
least as well as recent methods from the literature (executing at a frequency
of ∼ 9.1 Hz).

3 Horizon Detection

In order to obtain a broader validation of sub-sampling, we now turn our
attention to a different task: horizon detection for pitch and roll estimation
of outdoor MAVs [24, 46, 13, 33, 25, 8, 39, 49, 45, 35]. Typically it is assumed
that the MAV is rather high in the sky, so that the skyline can be assumed
equal to the horizon line. Each image is first segmented into sky and non-sky
regions. The segmentation is then used for estimating which line separates
the classes of sky and non-sky as well as possible. The slope of the line
is related to the MAV’s roll angle, while the vertical offset in the image is
determined by the MAV’s pitch angle.

Interestingly, most horizon detection algorithms use local features for
the segmentation. Consequently, it is straightforward to obtain significant

7Some of the MATLAB code could be further optimized to gain a little bit of time,
but the script already uses C-files for the convolution of image with the steerable filters
(C-code is executed much faster than MATLAB code).

17

speed-ups by applying sub-sampling to the task of horizon detection. The
remainder of this section is organized as follows. In Subsection 3.1, the
experimental setup for the horizon detection task is explained. Subsequently,
the effects of sub-sampling are investigated in Subsection 3.2. The resulting
sub-sampling method is compared to the state-of-the-art in Subsection 3.3.
Finally, the pitch and roll estimation algorithm is tested on a fixed wing
MAV in Subsection 3.4.

3.1 Experimental setup horizon detection

In this subsection, first the method for classifying image coordinates as sky
or non-sky is explained. Subsequently, the algorithm for learning a linear
separator is introduced. Finally, the image set used in the experiments is
discussed.

3.1.1 Sky Segmentation

The sky segmentation is performed with a decision tree, developed in [20].
The decision tree has been learned with the C4.5 algorithm [38] on the
basis of features extracted from the relatively large and publicly available
labelME database [41]8 (7456 images containing an entity labeled as ‘sky’).
From the images in the training set 34 different features have been extracted.
The detailed explanation of the features falls outside of the scope of this
paper and can be found in [20]. Here, it is only relevant to realize that all
features can be extracted locally, such as the YCbCr-value of a pixel, and that
some of them involve texture, such as the mean absolute distance between
a pixel’s value and the values of its 8-pixel neighborhood. A decision tree
has been selected on the basis of the camera and processing system available
onboard the MAV used for the experiments: a Surveyor BlackFin camera.
The decision tree implemented on the Surveyor BlackFin employs 5 of the 34
possible local features for segmentation. Extracting the 5 local features from
one pixel coordinate (x, y) results in one local ‘sample’. The performance of
the decision tree on sky / non-sky classification compares favorably to most
methods from the literature [20].

8http://labelme.csail.mit.edu/

18

3.1.2 Horizon Estimation

Horizon estimation involves the estimation of a linear separator of sky and
non-sky pixels in the image9. Finding a linear separator on the basis of
positive (sky) and negative (non-sky) samples is a standard problem with
well-known solutions. One solution to finding the horizon line is to employ a
linear algebraic formulation and determine a least-squares solution (cf. [35]).
In this article, we will focus on using a linear perceptron to separate the
sky and non-sky pixels. The main motivation for this is that the incremen-
tal perceptron learning lends itself well to achieving further speed-ups with
selective sampling (see Subsection 3.2.3).

The weights w of the perceptron determine the classification as follows:

ti = sgn(w⊤Ai), (6)

where Ai is a 3 × 1 column vector that represents the image coordinate as
(xi, yi, 1)

⊤, w is a 3× 1 vector with the horizon line parameters, and ‘sgn’ a
sign-fuction that is 1 if its argument is ≥ 0 and −1 otherwise. The weights
w can be adapted on the basis of a single sample according to the delta-rule:

wi+1 ← wi +∆wi, (7)

∆wi = γ(ti − ci)Ai, (8)

where ti is the classification by the perceptron (Equation 6), ci the classifica-
tion by the sky segmentation, and γ is the learning rate. Equation 8 shows
that the weights are only adapted if the sample is misclassified (ti 6= ci). The
weights are intialized as w = (0,−1, H

2
), implying prior pitch and roll angles

of 0◦.
One of the problems of the straightforward application of the delta rule

is that the order in which the samples are presented influences the deci-
sion boundary. For this reason the pixels should not be handed to the
perceptron from the top left to the bottom right of the image. In addi-
tion, the separation line does not necessarily converge when evaluating more
and more of the pixels. To reduce the aforementioned effects, in the imple-
mentation the final weights w′ are not equal to the weights wN . Instead,
the final weights are taken to be the average of the weights at set intervals

9Throughout the text we assume that the camera is a perfect linear camera, or that
images have first been undistorted before any further processing.

19

w′ = wj, j ∈ 0, u, 2u, . . . , N , where in the current experiments, u = 1
10
N .

This weight averaging considerably improves the results (cf. [1]).
The final weights w′ are then transformed to determine the estimated

pitch and roll angle. If w′(2) 6= 0 (the horizon line is not vertical in the
image), the slope of the horizon line is a = w′(1)/w′(2). The height in pixels
of the line at x = 0 is then b = w′(3)/w′(2). The equation of the horizon
line in image coordinates, y = ax + b, is used for estimating roll (φ̂) and
pitch (θ̂). φ̂ is simply the angle of the line with the x-axis. θ̂ depends on the
y-coordinate of the line at half of the screen. If the center coordinate of the
image is (0,0) with positive coordinates up, θ̂ = yFOVv/H , where FOVv is
the field of view of the camera lens in the vertical direction.

3.1.3 Image set

For the horizon detection experiments, an image set with ground truth hori-
zon lines was created. We have labeled the horizon lines in a collection of
116 images taken from a fixed wing MAV flying at altitudes between a few
meters and 200m. The images have been captured with the camera that
will be used onboard the MAV in the real-world experiments (see Subsection
3.4) and are of the size W × H = 160 × 120 pixels. Figure 8 shows some
example images. Please note that the sky line as detected by the algorithm
is not necessarily equal to the horizon line. At very low altitudes, the ground
truth horizon lines are typically situated below the sky line, implying that
a visual routine on the basis of sky classification will always have a slight
error in its pitch estimate. Also please remark that the light conditions vary
considerably over the image set.

Figure 8: Example images used in the pitch and roll estimation experiments.
The green lines are the ground-truth horizons. Please note that at low alti-
tudes they are situated below the sky line, implying that a visual routine on
the basis of sky classification will always have an error.

20

3.2 Effects of Sub-Sampling on Pitch and Roll Estima-
tion

The standard way of determining the horizon line in an image would be to
first segment the entire image and then use the resulting classifications for
estimating the parameters of the sky / non-sky separation line. In that case,
the computational complexity of pitch and roll estimation is approximately:

C ≈WH(F + S) + L+ T, (9)

where W and H are the width and height of the image, F is the computa-
tional effort spent in feature extraction, S the effort spent on segmentation
(classification of a feature vector as sky / non-sky), L is the cost involved
in determining the linear separator (typically also dependent on the number
of pixels involved, WH), and T is a negligible cost of transforming the line
parameters to estimates φ̂, θ̂.

Here we investigate the effects of only classifying a small subset s of all
possible pixels in an image, s ≪ WH , and using these classifications for
determining the horizon line. The image size on which we focus is W ×H =
160 × 120, since this is the image size used in the final implementation of
the algorithm onboard the MAV (see Subsection 3.4). In the experiments, a
border of 10 pixels is used, to avoid the worst effects of vignetting and lens
distortion. This results in an effective total number of 140 × 100 = 14000
pixels.

On the basis of Equation 9, significant speed-ups can be expected if a
few hundred pixel classifications suffice for estimating the horizon line. The
speed-up can be proportionate to WH/s, assuming that either (a) L is neg-
ligible in comparison with WH(F + S) (in which case it can be more or less
ignored), or (b) L is dependent on the number of pixels s (in which case the
computational costs will be reduced with a similar factor). In the case of
perceptron learning, L increases linearly with s. Finally, please remark that
larger image sizes would further improve the relative speed-up attained.

3.2.1 Accuracy

This subsection will focus on an empirical investigation of the effects of sub-
sampling on the accuracy of the pitch and roll angle estimates (θ̂ and φ̂). In
order to fly small MAVs, pitch and roll measurements are primordial. The
accuracy required by a certain platform depends higly on its characteristics.

21

While high performance gliders are very sensitive for pitch, low aspect ratio
planes, delta wings, flapping wing vehicles and some other low Reynolds
number MAVs can still be flown accurately with pitch and roll measurement
errors of up to 10 degrees. Especially slow and relatively constant errors
like a pitch angle error due to the sky-line / horizon-line offset are easily
compensated for by the outer loop or navigation loop PID controller that in
essence automatically finds the trim angle.

Two sampling strategies are investigated: sampling at random locations
and sampling on a grid. The grid is made so that the number of vertical
and horizontal grid points (gv, gh) are proportional to the dimensions of the
image area in which samples are taken. Since no sampling is performed in
the border of 10 pixels, this proportion is gh

gv
= 140

100
. The horizontal and

vertical step sizes of the grid are then determined so that the grid spans
the entire image area available for sampling. As mentioned, the success of
perceptron learning depends on the sequence of the samples and sampling
from the top left to the bottom right leads to bad results. Therefore, in the
case of grid sampling the grid locations are sampled in a random order. For
both sampling strategies each sample is extracted and subsequently evaluated
by the segmentation decision tree. The line parameters are then updated
with the perceptron learning rule of Equation 6. After all s samples have
been processed, the weights w′ are transformed to the estimated pitch and
roll angles. The errors between the estimated and actual angles are stored
(eφ = φ−φ̂ and eθ = θ− θ̂). As a final measure of interest, the mean absolute

error is determined (|eφ| and |eθ|). Due to their random elements, the mean
errors of both sampling strategies can vary. Therefore each sample strategy
is applied to the image set 10 times.

Figure 9 shows the relation between the number of samples and the mean
absolute errors in the roll and pitch estimates. The numbers of samples s
ranges from very few samples to full sampling: s ∈ {35, 140, 560, 1260, 2240,
5040, 8960, 14000}. These numbers have been chosen such that they lead to
a grid with proportion gh

gv
= 140

100
, where gv, gh ∈ N. The solid lines represent

the results for random sampling, while the dashed lines represent the results
for grid sampling. The mean absolute pitch error is shown in red, while the
roll error is shown in blue.

The main observation to be made from Figure 9 is that extracting only
560 samples (∼ 4% of the total) is sufficient to obtain an average absolute
error only slightly higher than the one with the full sampling of all 14000

22

0 2000 4000 6000 8000 10000 12000 14000
6

8

10

12

14

16

18

20

22

Number of samples

A
ve

ra
g

e
ab

so
lu

te
 e

rr
o

r

Abs. pitch error
Abs. roll error

Figure 9: Average absolute errors (and corresponding standard errors) for
the pitch (red) and roll (blue), for random sampling (solid) and grid sampling
(dashed).

samples. Furthermore, it is of practically no use to extract and process more
than 1260 samples.

One can intuitively understand the observation above by looking at the
spatial distributions that result from sub-sampling. Figure 10 shows the ap-
plication of the decision tree and the linear perceptron to an example image,
with different numbers of samples, s = {35, 560, 1260} (columns) and for the
two different sampling strategies (rows). Red circles are samples classified
by the decision tree as ground, blue crosses are samples classified as sky, the
green line is the ground-truth horizon line, and the yellow line is the separa-
tion line of the linear perceptron. The figure illustrates that s = 560 already
provides ample evidence on where the horizon line should be located. Please
remark that for finding the linear separator it is important to have sufficient
samples close to the horizon line. Both sampling methods seem to satisfy
this criterium, especially for numbers of samples s ≥ 560. Indeed, Figure 9
shows that random sampling and grid sampling have very comparable perfor-
mances. At low numbers of samples such as s = 35, there can be few samples
close to the horizon line. In combination with the perceptron learning, the
resulting pitch and roll angles can then become quite erratic.

For the onboard implementation the horizon estimation algorithm is ex-
tended in one important way; 90% of the samples is used for determining the
final weights, while 10% of the samples are used for estimating how well the
line separates the two classes. The portion of misclassifications is a measure

23

Figure 10: Application of the decision tree and the linear perceptron to
an example image, with different numbers of samples. From left to right,
s = {35, 560, 1260}. The top row shows the results for grid sampling, the
bottom row for random sampling. Please remark that standard full sampling
would involve the extraction and classification of 14000 samples.

of how reliable the pitch and roll estimates are. Unreliable estimates can
be discarded, leading to a lower error. In the experiments, a threshold is
used of 20% of the testing samples. So when extracting 1000 samples, 900
samples are used for determining the horizon line and 100 samples are used
for determining the uncertainty. If the horizon line misclassifies more than
20 samples, the horizon estimate is discarded.

The left part of Figure 11 shows the errors in pitch (red) and roll (blue) for
sample sizes s ∈ {140, 315, 560, 875, 1260} with random sampling (solid) and
grid sampling (dashed). The right part of the figure shows the corresponding
portions of discarded images. With the error checking mechanism the sub-
sampling methods obtain a lower error at these low numbers of samples, while
discarding an acceptable portion of estimates. However, in the right part of
Figure 11 one can observe that the portion of discarded images increases
more and more towards fewer samples. At s = 140, close to 40% of the
images are discarded, also reducing the execution frequency of the algorithm
by a similar amount. Both sampling strategies give similar results. Still, for
most sample sizes random sampling has a somewhat lower average absolute
error than grid sampling, discarding slightly more estimates.

24

0 200 400 600 800 1000 1200 1400
4.5

5

5.5

6

6.5

7

7.5

8

Number of samples

A
ve

ra
g

e
ab

so
lu

te
 e

rr
o

r

0 200 400 600 800 1000 1200 1400
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Number of samples

D
is

ca
rd

ed
 p

o
rt

io
n

Figure 11: Left: Average absolute errors (and corresponding standard errors)
for the pitch (red) and roll (blue), for random sampling (solid lines) and grid
sampling (dashed lines). Right: portion of discarded horizon lines.

3.2.2 Computational Effort

The results in the last subsection suggest that a small number of samples
already suffices to obtain the required accuracy. Here the implications for the
computational effort are investigated. Figure 12 shows the relation between
the number of samples and the average processing time per image, for the
case of random sampling. The results for grid sampling are similar. The
processing times are shown of the different parts of the horizon estimation
algorithm: feature extraction (blue), feature vector classification (green), and
the optimization of a linear separator (red). The aggregrated processing time
is also shown (black).

Figure 12 shows that the computational effort increases approximately
linearly with the number of samples, as expected from Equation 9. Fur-
thermore, the classification is computationally the most expensive part and
finding a linear separator is the least expensive part. While full sampling
results in a processing time of 1.86 s, the use of 560 samples leads to a pro-
cessing time of 0.09 s. This is a speed-up of a factor ∼21. Please note that
the MATLAB implementation of the decision tree always extracts for each
pixel all features present in the tree, and that an onboard implementation
should extract only those features that are actually tested for in the sample’s
path in the decision tree.

Figure 13 shows the relation between the number of samples and the
execution frequency of the entire algorithm in MATLAB (solid black line) and
on the Surveyor BlackFin camera (dash-dotted blue line). The corresponding
C-code for the segmentation and horizon estimation can be found at http:

25

0 2000 4000 6000 8000 10000 12000 14000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Number of samples

P
ro

ce
ss

in
g

 t
im

e
(s

)

Aggregated Time
Classification
Feature extraction
Linear separation

Figure 12: Average processing times (and corresponding standard errors)
of the different parts of the pitch and roll estimation algorithm: feature
vector classification (green), feature extraction (blue), and the optimization
of a linear separator (red). The aggregrated processing time is also shown
(black).

//www.bene-guido.eu/.
The main observation from Figure 13 is that the algorithm runs faster on

the Surveyor BlackFin than on the 2.00 GHz laptop. The main reason for
this is that the algorithm running on the laptop is implemented in MATLAB,
while the algorithm running on the BlackFin is implemented in C. MATLAB-
code is normally much slower than C-code.

3.2.3 Selective sampling: variable number of samples

As for the noise detection task, one can further limit the number of samples
extracted from the image by accepting a variable number of samples. In
contrast to the estimation of the correlation coefficient r in the noise detection
task, the goal of sampling in the horizon detection task is not to determine
an average value. In fact, different samples may carry different amounts of
information on the horizon parameters w.

The problem setting of passive sampling in the horizon detection task
lends itself well to application of a selective sampling algorithm from the
field of active learning (cf. [10]). Such an algorithm learns a classifier on the
basis of a sequence of unlabelled samples Ai. It can query a corresponding
label ci by paying a fixed cost u. The goal of the algorithm is to learn a

26

0 2000 4000 6000 8000 10000 12000 14000
0

10

20

30

40

50

60

70

80

90

100

110

120

Number of samples

E
xe

cu
ti

o
n

 f
re

q
u

en
cy

Figure 13: Execution frequency of the algorithm in MATLAB (solid black
line) and on the Surveyor BlackFin (blue dashed-dotted line).

good classifier while using as few samples as possible. This problem setting
corresponds well to the setting of the horizon detection task. Indeed, the
main computational effort lies in the feature extraction and sky classification,
and it would therefore pay off to be selective in the samples Ai that are
evaluated.

There are several algorithms for selective sampling with a linear percep-
tron (cf. [10, 40, 14]). In our experiments, we employ the selective sampling
algorithm of [10] since it is known to perform well on problems that are
not (perfectly) linearly separable [36]. The central idea behind this method,
referred to as CB in this article, is that samples close to the classification
boundary are more informative than samples far away. Indeed, one can ex-
pect that samples extracted far away from the horizon line typically do not
result in adjustments of the horizon line’s parameters.

More formally, the method receives a sequence of s coordinates Ai =
(xi, yi, 1), i ∈ {1, 2, . . . , s}. Per sample, it determines pi = w⊤

i Ai and draws
a random number q from a uniform distribution in the interval [0, 1]. If
q ≤ b

b+|pi|
, then the algorithm queries the label ci ∈ {−1, 1} and compares it

with ti = sgn(pi). It then executes the standard perceptron update (Equa-
tion 7): wi+1 ← wi + γ(ti − ci)Ai. Else, if q > b

b+|pi|
, it justs moves on to

the next sample. The parameter b determines the efficiency of the algorithm.
For small values of b, the probability of selection is largely dependent on the
magnitude of pi that is proportionate to the distance between the coordi-

27

nate and the classification boundary. If limb→∞ the algorithm will select all
samples, making it equal to standard perceptron learning.

The above-described selective sampling scheme bases its decision for ex-
tracting and classifying a sample on |pi|, and is therefore insensitive to the
predicted class ti of a sample. As a consequence, the algorithm may perform
badly on skewed data sets, which in the case of the horizon detection task
implies images that have little sky or little ground. Coping with skewed data
sets is a well-known problem in machine learning [27] and has even been
investigated in the context of selective sampling [50, 23]. However, to our
knowledge, there is no standard way in which the selective sampling method
of [10] can cope with skewed data sets. In our experiments, an adaptation of
the CB-method is tested that changes the selection criterium to:

q ≤

(

b

b+ |pi|

)

(

2

∑i−1
j=1 δ{tj ,−ti}

i− 1

)

(10)

, where δ{tj,−ti} is the Kronecker delta, which is 1 if tj = −ti and 0 other-
wise. The added term is equal to twice the proportion of samples encountered
of the other class. If the other class is sampled more often, the probability of
selecting the sample is larger and viceversa. The factor 2 makes the second
term equal to 1 if the classes are sampled equally, resulting in the standard
algorithm [10]. The modified algorithm will be referred to as CB’.

Figure 14 shows the results for applying CB (dashed lines), and CB’
(dotted lines). Random sampling is employed with various numbers of sam-
ples, s = {100, 500, 1000, 2500, 5000, 7500, 14000}. Since the evaluation of pi
hardly costs any computation time, the figure shows the corresponding av-
erage absolute errors at the number of samples that were actually extracted
and classified. For reference, the figure also shows for similar sample num-
bers the results of normal sampling, in which each sample is extracted and
classified (solid lines).

As expected, selective sampling leads to better performances at lower
numbers of samples than plain random sampling. In addition, CB’ outper-
forms CB for s > 1800. For sample numbers s ≤ 1800, CB’ gives better pitch
angle estimates (in the order of ∼ 2◦) while CB gives better roll angle esti-
mates (in the order of ∼ 1◦). The results therefore also show the advantage
of taking into account skewed proportions of sky and ground pixels.

28

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
4

6

8

10

12

14

16

18

20

22

Number of samples

A
ve

ra
g

e
ab

so
lu

te
 e

rr
o

r

Figure 14: Average absolute errors in pitch (red) and roll (blue) for standard
random sampling (solid), selective sampling method CB (dashed), and the
skewed selective sampling method CB’ (dotted).

3.3 Comparison with state-of-the-art

In this subsection, we compare the performance and processing time of the
introduced sub-sampling algorithm with two methods from the literature.
Each method consists of a combination of an image segmentation technique
from the literature with the linear perceptron described in Section 3.1.2.

The first method is inspired by [39] and performs image segmentation on
the basis of Hoiem’s segmentation algorithm [29]. The segmentation algo-
rithm starts with the superpixel (over-)segmentation [26]. Then it evaluates
different combinations of superpixels by extracting many local features within
each segment. Boosted decision tree learners select features from a large fea-
ture set, including color, texture, shape, and geometric features. The goal
of these learners is to classify the superpixels in the images into a number of
classes including the sky. In [39], it was found that varying the superpixel al-
gorithm’sK parameter [26] led to better sky classification. TheK-parameter
governs the resolution of the segmentation, with smaller values of K resulting
in fewer and larger superpixels.

The second method is adopted from Thurrowgood et al. [45]. It learns

29

Table 1: Processing times and performances of various methods on the image
set. The method with the best performance has been typeset in bold.

Method Processing time (s) |eφ| |eθ|
Hoiem 2005, K = 1 1.19 12.0 14.2
Hoiem 2005, K = 10 1.13 10.8 14.3
Sub-sampling (s = 500) 0.08 8.5 8.6
Sub-sampling (s = 250) 0.04 10.1 9.2
Thurrowgood 2009 0.02 9.9 9.9

a Fisher’s linear discriminant that linearly transforms the RGB image space
so that the sky and non-sky class are well-separated. We have tried out the
parameters mentioned in [45], but obtained better results by training the
linear discriminant on the LabelME data set mentioned in Subsection 3.1.1.
The latter results are reported in this article.

The methods are applied to the test set without discarding images. More-
over, the sub-sampling method uses random sampling of a fixed number of
samples. Table 1 shows the absolute average errors for all methods. It leads
to two observations. First, the best performance is obtained by the novel
horizon detection algorithm. Second, the fastest algorithm is the one of
Thurrowgood et al. [45], which uses one feature that is fast to extract. The
sub-sampling method uses the decision tree explained in Subsection 3.1.1,
obtaining its better accuracy by extracting more complex features. With
s = 500, the sub-sampling method takes 0.06s more processing time than
Thurrowgood’s method. Without sub-sampling, the decision tree would have
taken 1.84s more processing time.

3.4 Experiment on a Fixed Wing MAV

In this subsection an experiment on a fixed wing MAV is performed to show
that the pitch and roll estimation algorithm indeed functions onboard a real
MAV. In Subsection 3.4.1, the setup of this robotic experiment is explained.
Subsequently, in Subsection 3.4.2, the results of the experiment are discussed.

30

3.4.1 Setup

The top part of Figure 15 shows the fixed wing MAV with which the exper-
iment is performed. It is a modified Easystar, equipped with a Paparazzi
autopilot10. On the nose, a Surveyor SRV-1 BlackFin camera is placed (bot-
tom part of Figure 15).

Figure 15: Left: Fixed wing MAV used for the real-world experiments. Right:
modified Surveyor SRV-1 BlackFin camera mounted on the nose.

The BlackFin camera has been modified so that it can communicate with
a ground station via a 2.4 GHz Xbee communication module. Furthermore,
the BlackFin camera has been connected to the autopilot via ADC-channels.
In principle one could send many values over the channels by encoding them
over time. However, if communication speed is essential, the setup with two
ADC-channels implies that the BlackFin camera can communicate only two
values to the autopilot via PWM.

As mentioned in the previous section, the algorithms for segmenting the
sky and estimating the pitch and roll angle with the perceptron algorithm
have been implemented on the BlackFin DSP of a Surveyor camera. During
flight, the camera continuously grabs an image and estimates the pitch and
roll angle. It uses random sampling of 500 samples, while discarding esti-
mates that have too high an error (see Subsection 3.2.1). The camera can
send two values to the autopilot that have to be in the range from 0 to 3.3
V. In order to obtain a good resolution for the most relevant angles, both φ̂
and θ̂ are restricted to the interval [−60◦, 60◦].

10http://paparazzi.enac.fr/

31

Figure 16: Part of the flight trajectory as shown on the Paparazzi ground
control station. The MAV is flying along the green line in the direction of
the orange ‘carrot’.

A module has been added to Paparazzi that can receive the pitch and roll
estimates from both the thermopiles and the BlackFin camera. During the
flight only the estimates of the camera are used in the onboard state filter
that is used for control, but all signals are logged for post-flight comparison.
Although the thermopiles do not provide a real ground-truth value, it is
well-known that the corresponding attitude estimates are reliable in clear-
sky weather conditions (as was the case during the experiment). Therefore,
we require the camera estimates to be similar to the thermopile estimates.

3.4.2 Results

The Paparazzi autopilot successfully used the pitch and roll estimates of the
camera for controlling the MAV. Figure 16 shows the flight trajectory of the
MAV. The MAV was commanded to first make rightward turning circles and
then leftward turning circles, switching from one to the other after ∼ 922
seconds. Subsequently, the MAV changed from a circular trajectory to an
elliptical one. Figure 17 and 18 show the estimates logged during the part of
the flight in which the MAV switches from the rightward turns to the leftward
turns. The grey lines are for the thermopile-based estimates and the orange
solid lines for the camera-based estimates. The smoother appearance of the
thermo-based estimates is due to the slow characteristics of the thermopile
infrared temperature sensors.

The roll estimates in Figure 18 correspond qualitatively to what we know

32

800 820 840 860 880 900 920 940 960 980 1000
−6

−4

−2

0

2

4

6

8

10

12

14

P
it

ch
 a

n
g

le
 (

d
eg

)

Time (s)

Figure 17: Pitch estimates of the thermopiles (grey) and the camera (orange).

800 820 840 860 880 900 920 940 960 980 1000
−50

−40

−30

−20

−10

0

10

20

30

40

R
o

ll
an

g
le

 (
d

eg
)

Time (s)

Figure 18: Roll estimates of the thermopiles (grey) and the camera (orange).

about the flight trajectory: before 922 seconds, the roll angles are predomi-
nantly positive, while after they are mostly negative. The strong wind and
the turbulence during the flight are the causes that the roll angle is chang-
ing continuously. Despite these challenging conditions, the MAV succeeds in
flying an approximate circular trajectory.

Quantitatively, the camera and thermopile estimates are similar. The
largest deviations can be seen for the pitch angle, around 900 seconds. At
the three points where the estimates deviate significantly, the uncertainty of
the camera estimate is over the threshold (> 10 out of 50 test points are
misclassified by the horizon line). As a consequence, the estimates have been
disregarded, meaning that a pitch angle of 0◦ was assumed. Over the entire
flight, the average absolute deviation between the camera and thermopile

33

estimates are 2.27 degrees pitch and 5.93 degrees roll. The 90th percentile
deviation is 4.9 degrees for the pitch angle and 12.3 degrees for the roll angle.

The choice between using the thermopiles or the camera for attitude
estimation on MAVs will depend on the circumstances. The disadvantages
of the thermopiles are that (1) they cannot cope with weather conditions in
which there is too little temperature contrast between the earth and the sky,
and (2) they have a relatively slow response time. It is certain that the camera
will allow successful state estimation in many weather conditions that would
lead to failure of the thermopiles. However, there are also some weather types
in which the camera-based attitude estimation fails. For example, ‘stormy’
skies have a lot of high contrast and low illumination in the sky, which with
the current sky-classifier leads to an increased number of misclassifications.
Of course, highly foggy conditions also lead to state estimation problems.

Currently, a pre-flight check is always performed to verify that the image
segmentation works well. Transient errors such as those occurring when the
camera is suddenly overexposed to light do not impair the performance, also
thanks to the error checking routine.

4 Discussion

With the results from Section 2 and 3 in mind, we revisit the argument for
a more widespread use of sub-sampling techniques.

The reason that we make a case for sub-sampling is that there are few
cases in which sub-sampling is placed at the core of (robotic) vision algo-
rithms [48, 42, 4, 16]. Often, the possibility of extracting a small subset of
samples is simply ignored. As an illustration, in pitch and roll estimation
the entire image is typically processed, while almost all studies mention the
problem of rendering the algorithm computationally efficient enough for on-
board use [13, 33, 25, 8, 39, 49, 45, 35]11. When fully processing the image,
computational efficiency can only be achieved by employing simple local fea-
tures, such as raw pixel values in YCbCr-space (e.g., [33]). In the case of more
complex features / processing, such as in [46], the relatively large computa-
tional effort of the algorithm is simply accepted, leading to the requirement
of a more powerful processor and a larger robotic system. The experimen-

11A noteworthy exception is the work in [24, 46], in which the horizon line is first
estimated in a smaller version of the image and then refined with the help of the original
image.

34

tal results in Section 3 show that sub-sampling paves the way for the use of
more complex local features on small onboard processors: sub-sampling leads
to the difference between an execution frequency of 1.4 Hz (full sampling)
and 36 Hz (for 500 samples) on the Surveyor BlackFin, without noticeably
changing the algorithm’s performance. So the more widespread use of sub-
sampling could facilitate the use of better performing algorithms on smaller
processors / robotic platforms.

A higher computational efficiency is not only important for enhancing
performance or allowing execution on small processors, but also for allowing
robots to perform multiple visual tasks in parallel. For instance, the noise de-
tection algorithm studied in Section 2 would never have been used if it were
computationally less efficient. Namely, noise detection is not the primary
goal of robotic vision. The noise detection algorithm explained in Section 2
has mainly been employed for improving the results of an optic flow module
used for height control [17] and obstacle detection [18]. In [18], a 2.26 GHz
dual core laptop runs the openCV12 Lucas-Kanade optic flow algorithm, the
noise detection algorithm discussed in this article, and a ‘texton’-based13 ob-
stacle detector that also uses sub-sampling. All of these algorithms can only
run at the same time because they can be made computationally efficient
enough. The texton-based vision algorithm is rendered a factor ∼ 100 faster
with the help of sub-sampling, while still retaining a sufficient obstacle de-
tection performance. In other words, sub-sampling can be used to extract
information on a need-to-know basis, permitting robots to perform multiple
vision tasks in parallel.

Finally, sub-sampling is broadly applicable. In particular, it can be ap-
plied to the broad class of vision algorithms that either use local features
directly, or use local features to determine a global property of the image.
An example of the former is given by [4] in which sub-sampling is used to
search for a given pattern inside an image. Examples of the latter include
the noise detection task (in which local samples are used to determine the
correlation r and the number of noisy lines l) and the horizon detection task
(in which the samples are used to determine line parameters).

12http://opencv.willowgarage.com/wiki/
13Textons are prototypical image patches.

35

5 Conclusions

We conclude that sub-sampling is a broadly applicable strategy for render-
ing vision algorithms computationally much more efficient at an acceptable
cost in accuracy. The empirical results of the noise detection algorithm and
horizon detection algorithm show that speed-ups of a factor ∼ 14 and ∼ 21
can be obtained at a moderate cost in performance. The resulting algorithms
compare favorably with state-of-the-art algorithms from the literature.

Sub-sampling makes it possible for the vision algorithms to be executed
on small onboard processors (as with the horizon detection) or to be executed
in combination with other vision algorithms (as with the noise detection). In
addition, the number of extracted samples forms a convenient parameter
to explore the space of performance metrics and processing time, allowing
robots to extract information on a need-to-know basis.

The article further explored basic sampling strategies, in particular sam-
pling at random locations and sampling at grid locations. The latter is more
successful on the noise detection task, since it ensures a better spread of the
sampling locations. In the horizon detection task both strategies have a sim-
ilar performance, since the spread of the sampling locations is less important
than the number of samples close to the true horizon line. Remarkably, in
both tasks the order in which locations on the grid are being sampled has
to be randomized for better performance. In the noise detection task this is
due to a faster reduction of the probability that the noise is missed (Sub-
section 2.2.1). In the horizon detection task, the cause of this lies with the
perceptron learning algorithm that is sensitive to the order in which samples
are presented.

Finally, it was shown that the computational efficiency can be further
enhanced by means of selective sampling. In the noise detection task, the
Bernstein bound is used to stop sampling if the classification is sufficiently
certain. This results in a higher true positive ratio for the same number of
samples. In the horizon detection task, a selective sampling algorithm for
perceptrons is used in order to extract only those samples that are likely
to lead to learning updates of the horizon line parameters. This results in
lower error magnitudes at the same numbers of samples. A modification of
the algorithm that takes into account a possibly skewed relation between sky
and non-sky pixels improves the results even further.

We first discuss the future work on the introduced algorithms and then on
sub-sampling in general. Future work regarding the introduced algorithms

36

mostly involves testing them in even more different conditions. In the noise
detection task, we have focused on indoor environments that were reasonably
well-lit. It would be interesting to test it on outdoor images or in rather
dark environments. This would also provide insight into how specific the
parameter settings of ϑr and ϑl are to the application. For the horizon
detection task more field testing is required in order to better identify the
conditions in which the sky segmentation fails. This would hopefully lead to
insights into how the segmentation can be ameliorated, possibly leading to
the extraction of novel visual features.

Future work regarding sub-sampling includes the application of sub-sampling
techniques to other tasks and the development of even smarter sampling
strategies. In this article, the focus has been on passive sampling strategies
in which the sample locations can be determined in advance. An active sam-
pling strategy could use the information extracted from the image so far to
determine the best location for the next sample. In this manner, it may be
able to obtain even higher computational efficiencies.

References

[1] T. Andersen and T. Martinez. The little neuron that could. In Inter-
national Joint Conference on Neural Networks, volume 3, pages 1608 –
1613, 1999.

[2] J.-Y. Audibert, R. Munos, and C. Szepesvári. Tuning bandit algorithms
in stochastic environments. In Algorithmic Learning Theory 2007, pages
150–165, 2007.

[3] D. H. Ballard. Animate vision. Artificial Intelligence, 48(1):57–86, 1991.

[4] C. Barnes, E. Shechtman, A. Finkelstein, and D.B. Goldman. Patch-
match: A randomized correspondence algorithm for structural image
editing. In ACM Transactions on Graphics (Proc. SIGGRAPH), 2009.

[5] Antoine Beyeler, J.-C. Zufferey, and D. Floreano. Optipilot: control of
take-off and landing using optic flow. In European Micro Air Vehicle
conference and competitions (EMAV 2009), 2009.

[6] J.K. Bradley and R. Schapire. Filterboost: Regression and classification
on large datasets. In NIPS, volume 20, pages 185–192, 2008.

37

[7] J. Byrne and R. Mehra. Wireless video noise classification for micro air
vehicles. In 2008 Association for Unmanned Vehicle Systems Interna-
tional (AUVSI) Conference, 2008.

[8] R. Carnie, R. Walker, and P. Corke. Image processing algorithms for
UAV ‘sense and avoid’. In IEEE International Conference on Robotics
and Automation 2006 (ICRA), pages 2848–2853, 2006.

[9] K. Celik, S.J. Chung, and A. Somani. Mono-vision corner slam for
indoor navigation. In (EIT 2008), pages 343–348, 2008.

[10] N. Cesa-Bianchi, C. Gentile, and L. Zaniboni. Worst-case analysis of
selective sampling for linear classification. Journal of Machine Learning
Research, 7:1205–1230, 2006.

[11] S. Chikkerur, C. Tan, T. Serre, and T. Poggio. An integrated model
of visual attention using shape-based features. Technical report, MIT
CSAIL, CBCL-278, 2009.

[12] O. Chum and J. Matas. Optimal randomized ransac. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 30(8):1472 – 1482, 2008.

[13] T.D. Cornall and G.K. Egan. Measuring horizon angle from video on
a small unmanned air vehicle. In 2nd International conference on au-
tonomous robots and agents, 2004.

[14] S. Dasgupta, A. Kalai, and C. Monteleoni. Analysis of perceptron-based
active learning. Journal of Machine Learning Research, 10:281–299,
2009.

[15] G.C.H.E. de Croon, K.M.E. de Clerq, R. Ruijsink, B. Remes, and
C. de Wagter. Design, aerodynamics, and vision-based control of the
delfly. International Journal on Micro Air Vehicles, 1(2):71 – 97, 2009.

[16] G.C.H.E. de Croon, C. de Wagter, B.D.W. Remes R., and Ruijsink.
Local sampling for indoor flight. In Belgium-Netherlands Artificial In-
telligence Conference (BNAIC 2009), 2009.

[17] G.C.H.E. de Croon, C. de Wagter, B.D.W. Remes, and R. Ruijsink.
Random sampling for indoor flight. In International Micro Air Vehicle
conference, Braunschweig, Germany (2010), 2010.

38

[18] G.C.H.E. de Croon, E. de Weerdt, C. De Wagter, B.D.W. Remes, and
R. Ruijsink. The appearance variation cue for obstacle avoidance. IEEE
Transactions on Robotics, in press.

[19] G.C.H.E. de Croon, E.O. Postma, and H.J. van den Herik. A situated
model for sensory-motor coordination in gaze control. Pattern Recogni-
tion Letters, 27(11):1181–1190, 2006.

[20] G.C.H.E. de Croon, B.D.W. Remes, C. de Wagter, and R. Ruijsink.
Sky segmentation approach to obstacle avoidance. In IEEE Aerospace
Conference, Big Sky, Montana, USA, 2011.

[21] J. Denzler and C.M. Brown. Information theoretic sensor data selection
for active object recognition and state estimation. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 24(2):145–157, 2002.

[22] P. Domingos and G. Hulten. A general method for scaling up machine
learning algorithms and its application to clustering. In ICML, pages
106–113, 2001.

[23] S. Ertekin, J. Huang, L. Bottou, and C.L. Giles. Learning on the border:
active learning in imbalanced data classification. In CIKM’07, 2007.

[24] S.M. Ettinger, M.C. Nechyba, P.G. Ifju, and M. Waszak. Vision-guided
flight stability and control for micro air vehicles. In IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems 2002 (IROS),
volume 3, pages 2134 – 2140, 2002.

[25] S. Fefilatyev, V. Smarodzinava, L.O. Hall, and D.B. Goldgof. Horizon
detection using machine learning techniques. In 5th international con-
ference on machine learning and applications (ICMLA’06), 2006.

[26] P.F. Felzenszwalb and D.P. Huttenlocher. Efficient graph-based image
segmentation. International Journal of Computer Vision, 59(2), 2004.

[27] H. He. Learning from imbalanced data. IEEE transactions on knowledge
and data engineering, 21(9):1263–1284, 2009.

[28] W. Hoeffding. Probability inequalities for sums of bounded random
variables. Journal of the American Statistical Association, 58:13–30,
1963.

39

[29] D. Hoiem, A. A. Efros, and M. Hebert. Geometric context from a single
image. In S. Ma and H.-Y. Shum, editors, 10th IEEE International Con-
ference on Computer Vision (ICCV 2005), Beijing, China, volume 1,
pages 654–661, Washington, DC, 2005. IEEE Computer Society.

[30] S. Jodogne and J. Piater. Closed-loop learning of visual control policies.
Journal of Artificial Intelligence Research, 28:349–391, 2007.

[31] T. Kato and D. Floreano. An evolutionary active-vision system. In
Congress on Evolutionary Computation (CEC 2001), Seoul, South Ko-
rea, volume 1, pages 107–114. IEEE Computer Society, 2001.

[32] O. Maron and A. Moore. Hoeffding races: Accelerating model selection
search for classification and function approximation. In NIPS, volume 6,
pages 59–66, 1993.

[33] T.G. McGee, R. Sengupta, and K. Hedrick. Obstacle detection for small
autonomous aircraft using sky segmentation. In ICRA 2005, 2005.

[34] V. Mnih, C. Szepesvári, and J.-Y. Audibert. Empirical bernstein stop-
ping. In 25th International Conference on Machine Learning (ICML
2008), volume 307, pages 672–679, 2008.

[35] I.F. Mondragón, M.A. Olivares-Méndez, P. Campoy, C. Mart́ınez, and
L. Mejias. Unmanned aerial vehicles UAVs attitude, height, motion esti-
mateion and control using visual systems. Autonomous Robots, 29:17–34,
2010.

[36] C. Monteleoni and M. Kriinen. Practical online active learning for clas-
sification. In IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2007.

[37] N.Frietsch, J. Seibold, J. Gut, T.Schaich, O. Meister, and G.F. Trom-
mer. Cooperative navigation aiding in heterogeneous uav/ugv teams.
In International Micro Air Vehicle conference and competitions (IMAV
2010), 2010.

[38] J.R. Quinlan. Improved use of continuous attributes in c4.5. Journal of
Artificial Intelligence Research, 4:77–90, 1996.

40

[39] C. Rasmussen. Superpixel analysis for object detection and tracking
with application to UAV imagery. In 3rd international conference on
Advances in visual computing, volume 1, pages 46–55, 2007.

[40] D. Roth and K. Small. Active learning with perceptron for structures
output. In ICML ’06: workshop on learning in structured output spaces,
2006.

[41] B.C. Russell, A. Torralba, K.P. Murphy, and W.T. Freeman. Labelme: a
database and web-based tool for image annotation. International Jour-
nal of Computer Vision, 77(1–3):157–173, 2008.

[42] J. Shotton, J. Winn, C. Rother, and A. Criminisi. Textonboost: Joint
appearance, shape and context modeling for multi-class object recogni-
tion and segmentation. In ECCV 2006, 2006.

[43] Nathan Sprague and Dana Ballard. Eye movements for reward maxi-
mization. In Sebastian Thrun, Lawrence Saul, and Bernhard Schölkopf,
editors, Advances in Neural Information Processing Systems 16. MIT
Press, Cambridge, MA, 2004.

[44] J. Sturm and A. Visser. An appearance-based visual compass for mobile
robots. Robotics and Autonomous Systems, 57:536–545, 2009.

[45] S. Thurrowgood, D. Soccol, R.J.D. Moore, D. Bland, and M.V. Srini-
vasan. A vision based system for attitude estimation of UAVs. In IEEE /
RSJ International Conference on Intelligent Robots and Systems, pages
5725–5730, 2009.

[46] S. Todorovic, M.C. Nechyba, and P. Ifju. Sky / ground modeling for
autonomous MAV flight. In IEEE International Conference on Robotics
and Automation 2003 (ICRA), pages 1422–1427, 2003.

[47] J. Vogel and N. de Freitas. Target-directed attention: sequential decision
making for gaze planning. In IEEE International Conference on Robotics
and Automation (ICRA 2008), pages 2372–2379, 2008.

[48] L. Xu and E. Oja. A new curve detection method: Randomized hough
transform (rht). Pattern Recognition Letters, 11:331 – 338, 1990.

41

[49] B. Zafarifar, H. Weda, and P.H.N. de With. Horizon detection based on
sky-color and edge features. In W.A. Pearlman, J.W. Woods, and L. Lu,
editors, Visual Communications and Image Processing 2008 (SPIE), vol-
ume 6822, pages 1–9, 2008.

[50] J. Zhu and E. Hovy. Active learning for word sense disambiguation with
methods for addressing the class imbalance problem. In 2007 Joint con-
ference on empirical methods in natural language processing and com-
putational natural language learning, pages 783–790, 2007.

42

