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Abstract

Micro Air Vehicles need to have a robust landing capability, espe-
cially when they operate outside line-of-sight. Autonomous landing
requires the identification of a relatively flat landing surface that does
not have too large an inclination. In this article, a vision algorithm
is introduced that fits a second-order approximation to the optic flow
field underlying the optic flow vectors in images from a bottom cam-
era. The flow field provides information on the ventral flow (Vx/h), the
time-to-contact (h/− Vz), the flatness of the landing surface, and the
surface slope. The algorithm is computationally efficient and since it
regards the flow field as a whole, it is suitable for use during relatively
fast maneuvers. The algorithm is subsequently tested on artificial im-
age sequences, hand-held videos, and on the images made by a Parrot
AR drone. In a preliminary robotic experiment, the AR drone uses
the vision algorithm to determine when to land in a scenario where it
flies off a stairs onto the flat floor.

1 Introduction

Autonomous landing is an important capability for Micro Air Vehicles (MAVs),
especially if they have to operate outside line-of-sight. While a barometer
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provides information on altitude, it does not provide information on the
height of the MAV above the terrain, nor on the suitability of the terrain for
landing. Active sensors such as a laser scanner [2] or multiple cameras as
in stereo vision [1] do offer such information. They instantaneously estimate
distances to many points on the landing surface. However, such sensor se-
tups only work at lower heights and are not energy or weight efficient. Since
such efficiency is important for MAVs, it would be beneficial to have a robust
landing strategy based on a single downward-pointing camera.

With a monocular camera setup, two main approaches to autonomous
landing can be employed. The first approach is visual Simultaneous Lo-
calization And Mapping (SLAM) [8, 6], in which the 3D locations of all
features in sight are determined. Various approaches to visual SLAM have
been proposed over the years, which have consistently improved with respect
to accuracy and computational effort [9, 23]. Still, SLAM delivers a lot of
detailed information on the environment that is not strictly required for the
landing task, and hence uses more computational resources than necessary.

The second approach is bio-inspired in the sense that it directly uses the
optic flow field for control. The earliest studies of this approach [14, 19] are
based on the biological finding that bees keep the ventral flow constant during
a grazing landing [4, 5]. The ventral flow is equal to the translational velocity
divided by the height (Vx/h), and keeping it constant results in a soft touch
down. Since the ventral flow cannot account for the vertical dynamics, recent
engineering studies [15, 16, 20] complement the ventral flow with the time-to-
contact, i.e., the height divided by vertical velocity (h/− Vz). Interestingly,
biologists have now confirmed that one of the engineered strategies [15, 16] is
also used by honeybees: they keep the time-to-contact constant while landing
on flat surfaces [3]. The advantage of a bio-inspired approach is that light-
weight neuromorphic sensors with high sensitivity and update frequency can
be used directly for controlling the landing [11, 20].

The above-mentioned bio-inspired landing studies focus on autonomous
landing on a flat surface. However, many real-world missions for MAVs will
involve unknown landing sites that may be cluttered or have a slope. Indeed,
bees can choose their landing site and adapt their body attitude to the slope
of the surface on which they are landing [10]. For an MAV the detection of
the landing surface’s slope would also be of interest, either for adapting the
MAV’s attitude or for evaluating the suitability of the surface for landing.

In this article, a computationally efficient computer vision algorithm is
proposed that uses a bottom camera. First, optic flow vectors are deter-
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mined and then a second order fit of the entire optic flow field is made. The
fit provides information on the ventral flow, time-to-contact, flatness of the
landing surface, and surface slope. The algorithm is computationally efficient
and robust to noisy optic flow vectors that are likely to occur in a real MAV
landing scenario. In addition, it lends itself well for translation to algorithms
for novel sensors that mimick insect eyes [22, 13].

The remainder of the article is structured as follows. In Section 2, the
vision algorithm is explained. It is tested on image sequences in Section 3.
The results of a landing experiment with a Parrot AR drone are discussed in
Section 4. Finally, conclusions are drawn in Section 5.

2 Vision Algorithm for Slope Estimation

2.1 Optic flow equations for a sloped planar surface

The vision algorithm proposed for the slope estimation is based on the early
optic flow work in [17]. In the explanation of the algorithm, a pinhole camera
model is employed. The algorithm assumes (1) the camera to point down-
ward, (2) the rotation rates to be known from the MAV’s state estimation
(e.g., using gyros), and (3) the landing surface in sight to be predominantly
planar. Under these assumptions, the optic flow vectors in the image follow
the equations:

u = (−Vx + xVz)/Z, (1)

v = (−Vy + yVz)/Z, (2)

with u and v the (derotated) optic flow in the x- and y-direction of the image,
and Vx, Vy, Vz the motion in X , Y , and Z direction, respectively. x and y
are image coordinates. Figure 1 shows the relevant coordinate axes. Please
note that the Z-axis is aligned with the camera’s optical axis and that the
coordinate (X, Y, Z) = (0, 0, 0) is located at the intersection of the camera’s
principal axis with the ground surface. The height of the camera above the
ground surface is represented with h. The surface height Z can be modelled
as a plane:

Z = h+ aX + bY, (3)

with h the height above the surface at (x, y) = (0, 0). The slope angles of
the surface are:

α = atan(a) (4)
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β = atan(b) (5)

By a transformation of coordinates, in [17], the surface height is rewritten
as:

z = (Z − h)/Z = ax+ by, (6)

, where x = X/Z and y = Y/Z. Please remark that the normalized x-
coordinate in Eq. 6 is related to the pixel coordinate x̃ by x = x̃/f̃ , where
f̃ is the focal length in pixels. In order to keep the equations uncluttered,
normalized coordinates will be used for the remainder of the article. However,
one should keep in mind that the actual slope angle in degrees can only be
retrieved in the case of a calibrated camera (with f̃ known).

Figure 1: Left: the main coordinate axes involved in the optic flow calcula-
tions. Right: illustration of a ground surface with a nonzero slope α.

In addition to the coordinate transformation, the velocities are scaled
with respect to the height h, i.e., ωx = Vx/h, ωy = Vy/h, and ωz = Vz/h.
This leads to:

u = (−ωx + xωz)(1− z) (7)

v = (−ωy + yωz)(1− z) (8)

Replacing z with ax+ by (from Eq. 6), leads to:

u = −ωx + (ωxa+ ωz)x+ ωxby − aωzx
2 − bωzxy (9)

v = −ωy + ωyax+ (ωyb+ ωz)y − bωzy
2 − aωzxy (10)
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2.2 Optic flow field parameter estimation

In [17], the rotational optic flow terms were left in, and the discussion hence
goes toward how to find the Focus-of-Expansion (FoE) and determine the
first and second order spatial flow derivatives at that point. In that way,
all terms can be identified (translational, rotational, and the slopes of the
surface). However, determining the FoE is a difficult task in itself, and
errors in its location can have a large influence on the subsequent results.
In addition, since MAVs typically have access to gyro measurements, the
rotational components do not have to be determined. So instead of finding
the FoE, the vision algorithm proposed in this article immediately determines
the parameters of the optic flow field:

u = pu[1, x, y, x
2, xy]T , (11)

v = pv[1, x, y, y
2, xy]T , (12)

The parameter vectors pu and pv are estimated separately with a maximal
likelihood linear least squares estimate within a robust random sample con-
sensus (RANSAC) estimation procedure [12], with 5 points per fit and 20
iterations. Figure 2 illustrates the result of such a fit.

2.3 Extraction of variables relevant for landing

The so-determined parameters can then be used to estimate the following
variables of interest for an autonomous landing. The ventral flow is set to
(ωx, ωy) = (pu0, pv0). The time-to-contact and slopes can be retrieved from
the first order spatial derivatives at the center of the image (x, y) = (0, 0):

∂u

∂x

∣

∣

∣

∣

∣

x=0,y=0

= ωxa + ωz = pu1, (13)

∂u

∂y

∣

∣

∣

∣

∣

x=0,y=0

= ωxb = pu2, (14)

∂v

∂x

∣

∣

∣

∣

∣

x=0,y=0

= ωya = pv1, (15)

∂v

∂y

∣

∣

∣

∣

∣

x=0,y=0

= ωyb+ ωz = pv2, (16)
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Figure 2: Illustration of the vision process. Top left: the determined optic
flow vectors. Top right: quadratic fits for the flow in x-direction (circle
markers) and y-direction (cross-markers). Bottom left: estimated flow field
in x-direction. Bottom right: estimated flow field in y-direction. The motion
of the camera is straight towards the wall, which has an angle of ∼ 45◦ to
the camera axis.

The slopes can then be retrieved as a = pv1/ωy and b = pu2/ωx. However,
these equations become ill-conditioned and hence sensitive to even the small-
est of noise if ωx or ωy are small. If there is insufficient motion in X and Y
direction, then it may still be possible to estimate the slopes on the basis of
the second order derivatives:

∂u

∂x∂x
= −2aωz = 2pu3, (17)

∂u

∂x∂y
= −bωz = pu4, (18)

∂v

∂x∂y
= −ωza = pv4, (19)

∂v

∂y∂y
= −2bωz = 2pv3, (20)
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which leads to two formulas for a and two formulas for b. However, all of
these formulas depend on ωz, the relative vertical velocity. When looking
at the formulas for the first order spatial derivatives, one will notice that
ωz cannot be determined without knowing a or b - seemingly introducing
a chicken-and-egg problem. The solution lies in remembering that we only
need these second order derivatives if the ventral flow estimate(s) are small.
If, for example, ωx ≈ 0 then:

∂u

∂x
= ωxa+ ωz ≈ ωz, (21)

and, similarly, for ωy ≈ 0:

∂v

∂y
= ωyb+ ωz ≈ ωz, (22)

In summary, when the horizontal flow is not sufficient, the relative velocity
ωz can be determined. In turn, this leads to slope estimates a = −pu3/ωz,
a = −pv4/ωz, b = −pu4/ωz, and b = −pv3/ωz. All these equations become
ill-conditioned if ωz becomes small. This is intuitive, since if there is also
little motion in the Z-direction, then no estimates of slope are possible. The
remaining question is then how to deal with cases in which an MAV has
velocities in multiple directions. For optimal estimation, one should fuse
the different a and b estimates on the basis of their certainties and possible
prior probability distributions. However, in this preliminary work slopes are
determined on the basis of the first-order optic flow derivatives if there is
sufficient motion in the X, Y -plane and only on the basis of the second-order
optic flow derivatives if there is not.

The time-to-contact τ is determined on the basis of the divergence:

D =
∂u

∂x
+

∂v

∂y
(23)

, with τ = 2/D. Hence, τ includes the ventral flow and the slopes (see Eqq.
13 and 16). This makes sense, because in the case of pure horizontal motion,
the MAV can still intersect the landing surface if it has a slope. However,
if one is only interested in the component in the Z-direction, τ = 1/ωz

could be used. In the current work the first definition is employed. Please
note that in contrast to the slope angle, the time-to-contact can also be
determined without knowledge of f̃ . Moreover, the time-to-contact is in
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principle expressed in frames. Knowledge of the time interval between image
frames is necessary to transform it to seconds.

Finally, the flatness of the slope is related to how good the optic flow
vectors fit with the above-described quadratic model. The RANSAC pro-
cedure returns a number of inliers and an error, which can both serve as
measures for flatness.

Figure 3: Example images. From left to right: artificial image, images from
manual videos (wall, flat scene, structured scene), image from the drone’s
bottom camera.

2.4 Implementation

A main decision for the implementation of the vision algorithm described
above is the choice of optic flow algorithm. We employ a sparse optic flow
setup with the method of Shi and Tomasi [21] to find good features for track-
ing and Lucas-Kanade’s pyramid method [18] for optic flow determination.
We have made both an implementation in MATLAB, for off-line experiments,
and in C++ for online experiments on an MAV. The MATLAB code of the
vision algorithm is available at http://mavlab.lr.tudelft.nl/, so that the
reader can test it on his / her own image sequences. Please note that the
open source code involves our own implementation of Lucas-Kanade’s optic
flow tracking, while we used the implementation of [7] for the experiments.
This code gives slightly better results. The code from [7] is openly available,
but copyrighted, so we chose not to include it in our code package. However,
readers can download it and incorporate it easily into the code.

3 Experiments on Image Sequences

In this section, a preliminary test of the vision algorithm is performed by
applying it to various image sequences. The algorithm is tested on three
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Figure 4: Results of time-to-contact estimation on five image zooms. The
ground-truth time-to-contact goes from 200 to 5.

types of image sequences: (1) image zooms, (2) manually made videos, and
(3) images from the Parrot AR drone. Figure 3 shows five example images.

The test on artificial image sequences is motivated by the fact that in
this setup the ground-truth values are exactly known. The virtual camera
used in these experiments has a field-of-view of 50◦ and generates relatively
small 256× 256 pixel images. To test the determination of time-to-contact,
five image zooms were performed on a flat roof texture. The ground-truth
time-to-contact decreases at a constant rate from 200 to 5. The results of
the time-to-contact estimation are shown in Figure 4. The estimated time-
to-contact is very accurate, even up to 200 frames from contact.

In order to test the slope estimation, a virtual camera moves with re-
spect to the roof texture image, which is placed at various slope angles in
the X-direction: α ∈ {0, 15, 30, 45, 60}◦. Three types of movements are
studied: horizontal movement in the X-direction, horizontal movement in
the Y -direction, and vertical movement towards the artificial landing surface
(Z-direction).

Figure 5 shows the results of the artificial movement sequences. The top
left plot shows the slopes estimated during a constant movement in the Y -
direction (with ωy ∼ 3). Overall, the estimated slopes are rather close to
the ground-truth values, with errors in the order of a few degrees. There
are a few outlier cases with errors of up to 15 degrees. The top right plot
shows the more difficult case of a constant movement toward the surface,
in the Z-direction. Although the estimates rely on second-order derivatives,
the slopes are still estimated rather accurately. During the last 10 time
steps of the approach, the implemented optic flow algorithm has problems
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determining the correct optic flow vectors. This leads to a degradation of the
slope estimation. The bottom left plot shows the slopes estimated during a
constant movement in the X-direction. Although the results are close to the
ground-truth values at the start of the approach, after 40 frames a few of
the estimates start to deviate from the ground-truth in the order of tens of
degrees. The cause of this phenomenon lies in the fact that the movement
brings the virtual camera further from the landing surface, reducing the
magnitude of the ventral flow ωx. The bottom right plot shows ωx over time
during the movement. A smaller ventral flow leads to less accurate slope
estimates.

For further testing, three sets of videos have been made of a textured
wall. In the first set the camera moves in the Y -direction (first up and then
down), in the second set in the X-direction (first left and then right), and in
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Figure 5: Slope estimation results on artificial movement sequences. The
ground-truth values for the slopes α are {0, 15, 30, 45, 60}◦. Top left: slopes
estimated during movement in the Y -direction. Top right: slopes estimated
during movement in the Z-direction. Bottom left: slopes estimated during
movement in the X-direction. Bottom right: ventral flow ωx during move-
ment in the X-direction.
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the third set the camera moves in the Z-direction (in this case toward the
wall). Put in a landing context, the first two sets cover horizontal motion,
while the third set covers vertical motion toward the landing surface. Each
set contains 5 image sequences in which the angle of the wall roughly iterates
over the angles {0, 15, 30, 45, 60} degrees. Please remark that the camera is
moved in-hand, so additional motions and even rotations are present in the
images. Since there is no clear ground-truth and the camera is uncalibrated,
this experiment mainly serves the goal of verifying that the slope a increases
with an increasing angle to the wall (the slope values are not transformed to
angles in this case). Figure 3 shows an example image from the sequence at
∼ 45 degrees.
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Figure 6: Results of slope estimation on video sequences. Left: motion in
Y -direction. Right: motion in X-direction. The plots show the estimated
slope a (y-axis) over time (x-axis). The brightness of the lines are determined
by the angle with the wall, with the darkest color corresponding to 0 degrees
and the brightest color corresponding to 60 degrees.

Figure 6 shows the results of this experiment for motion in the Y -direction
(left plot) and X-direction (right plot). The plots show the estimated slope
a (y-axis) over time (x-axis). The brightness of the lines are determined by
the angle with the wall, with the darkest color corresponding to 0 degrees
and the brightest color corresponding to 60 degrees. The lines are somewhat
noisy, especially when the motion gets small, e.g., at reversal points of the
movements. However, in both plots, a clear ordering can be seen from dark
to bright slopes, as desired.

Figure 7 contains the results for motion in the Z-direction, illustrated in
the same manner. In this case, the results are much less clear. The lower
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Figure 7: Results of slope estimation on video sequences with the camera
moving in Z-direction. The plots show the estimated slope a (y-axis) over
time (x-axis). The brightness of the lines are determined by the angle with
the wall, with the darkest color corresponding to 0 degrees and the brightest
color corresponding to 60 degrees.

degree slopes switch between positive and negative values, while the higher
degree slopes are constantly negative. The worse results may be explained
by the rotations in the video not accounted for by optic flow derotation. In
addition, the second-order spatial derivatives of the optic flow field are more
difficult to determine than the first order ones.

Subsequently, the detection of flatness is tested with the help of two sets
of each three videos. The first set contains flat surfaces, while the second set
contains considerable 3D structure. The videos are made by moving toward
the ground surface, i.e., in the Z-direction. The results are shown in Figure
8, which shows the mean absolute errors of the quadratic fits. The black
lines illustrate the results for the flat surfaces, while the red lines illustrate
the results for the scenes with 3D structure. The videos of flat surfaces have
clearly a lower error than the videos of structured scenes. However, placing
a threshold is not straightforward, as the error also seems to depend on the
time-to-contact. In particular, lower time-to-contacts entail larger optic flow,
which leads to larger errors.

Finally, the slope estimation algorithm is run on the 160×120 pixel images
of the Parrot AR drone’s bottom camera, while it moves down a stairs. The
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Figure 8: Results for estimation of landing surface flatness. Mean absolute
error of the quadratic fits (y-axis) over time (x-axis). The black lines illustrate
the results for the flat surfaces, while the red lines illustrate the results for
the scenes with 3D structure.
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Figure 9: Results for estimation of slope with the Parrot AR drone’s bottom
camera. The plot shows a (blue) and b (green) over time (x-axis).

rotations of the drone are not accounted for by derotation. Figure 9 shows
the estimated slope a in the x-direction (blue) and b in y-direction (green)
during a part of the trajectory over the stairs. The y-direction is in the
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direction of the stairs. Indeed, while a is reasonably small and switches from
positive to negative and back, b is larger and mostly negative, as it should
be. Please note that the slopes are not expressed in angles.

In summary, when the camera is calibrated and rotation is accounted for,
the vision algorithm is able to retrieve the angle of a landing surface rather
accurately. In the case of an uncalibrated camera and in the presence of
small rotations, the slope estimates vary clearly with the angle of the wall
in the case of movements in the X, Y -plane. The slope angle estimation
then depends only on the first order spatial derivatives of the optic flow. A
higher ventral flow leads to better slope estimates. The results on videos with
motion in the Z-direction give worse results. Finally, the vision algorithm
provides a cue for the detection of 3D structure below the MAV.

4 Landing Experiment

The above-described vision algorithm is implemented in TU Delft’s Smar-
tUAV ground control station, and tested in real-time on a Parrot AR drone.
The goal of the experiment is to show that the vision algorithm can work in
real-time, real-world conditions.

In order to show that the vision algorithm can be used in a generic way,
a staircase was chosen as the test environment. Stairs are challenging, since
it is not a flat inclined surface. The setup for the experiment is presented in
Figure 10. The experiment started with a forward motion of the drone (in
the Y -direction) generated by a small pitch angle. This forward motion was
controlled by proportional controller using the feedback of the velocity esti-
mated from the AR drone optic flow measurement. The purpose of moving
the drone in forward direction was to generate ventral flow to estimate the
slope in real-time. The drone thus travels down the stairway and to a flat
ground in the end. The height of the drone was under control of the Parrot
firmware, implying that it remained at a fixed height above the steps of the
stairs.

A simple landing strategy was used in this preliminary experiment, i.e.
when the value of the estimated slope was close to zero b ∈ [−0.0005, 0.0005],
a landing command was given to land the drone immediately. The results of
the estimated slope b from the onboard images captured during the flight is
shown in Figure 11. It is clearly seen that the value of the slope was always
negative when the drone was flying above the stairs. At the instant when

14



stairs

flatland

Figure 10: Landing experiment setup

it reached the flat surface, the value of the slope changed its sign and the
autoland was activated to bring the MAV to the ground.

Please note that the drone moves forward by pitching forward. The ex-
perimental results show that this considerably influences the estimated slope,
which was not accounted for in the code. This led to slightly less negative
slope values above the stairs and slightly more positive slope values above
the flat floor1. If a camera calibration is available, the angle of the surface
can be estimated in degrees. The estimated attitude of the MAV can then
be subtracted from this angle.
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Figure 11: Real-time slope estimation results with the Parrot AR drone’s
bottom camera. The plot shows the estimated slope b and images taken
from the onboard camera over time (x-axis)

1A video of the experiment can be found here: http://www.youtube.com/watch?v=

TXIPb1NvUJY
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5 Conclusion

The main conclusion is that the proposed vision algorithm is able to extract
ventral flow, time-to-contact, flatness, and slope of the landing surface be-
neath an MAV. A preliminary landing experiment shows that the algorithm
is computationally efficient enough to run in real-time and can discriminate
between the stairs and a flat surface. The experiments show that it is im-
portant to take into account the pitch angle of the MAV while determining
the slope of the surface.

Future work will focus on a further investigation of how optic flow can
be used to best estimate the variables of interest. For example, the current
maximal likelihood estimation has its limitations, especially if there is a lot of
noise or if the assumption is violated that rotation is accounted for. A max-
imal a posteriori estimate probably would better cope with such situations.
In addition, combining slope estimates in a Bayesian fashion could consid-
erably improve the estimates and allow for the exploitation of translation in
multiple directions. In order to create such a Bayesian estimation scheme,
we need to gain more insight into matters such as the relation between the
magnitude of the ventral flow and slope estimation accuracy. Finally, in this
article we have not studied the control-part of landing in detail. In future
work, a more elaborate landing procedure utilizing the estimated variables
will be devised and tested in a more complex environment.
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