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Abstract

One capability that is essential for avoiding both other flying ve-
hicles and static obstacles is to visually discern possible obstacles in a
UAV’s environment from the sky. The main contribution of this article
is the presentation of a feasible approach to obstacle avoidance based
on the segmentation of camera images in sky and non-sky regions. The
approach is named the Sky Segmentation Approach to obstacle avoid-
ance (SSA). The central concept is that potentially threatening static
obstacles protrude from the horizon line. The main challenge for SSA
is automatically interpreting the images robustly enough for use in var-
ious environments and fast enough for real-time performance. In order
to achieve robust image segmentation, machine learning is applied to
a large database of images with many different types of skies. From
these images, different types of visual features are extracted, among
which most of the features investigated in the literature. In the inter-
est of execution speed and comprehensibility, decision trees are learned
to map the feature values at an image location to a classification as
sky or non-sky. The learned decision trees are fast enough to allow
real-time execution on a Digital Signal Processor: it is run onboard a
small UAV at ∼ 30 Hz. Experiments in simulation and preliminary
experiments on a small UAV show the potential of SSA for achieving
robust obstacle avoidance in urban areas.

1 Introduction

Small Unmanned Air Vehicles (UAVs) hold a promise as sensors in the sky
for many applications. Recent developments have led to the wide availability
of autopilots that allow even the smallest of UAVs to fly autonomously in
open outdoor areas [1, 2]. These systems are based on the use of GPS and
IMU, which can ensure safe operation high in the sky. However, there are
no autonomous systems yet that allow operation of small UAVs closer to
the ground or in urban areas. The main missing element is an autonomous
routine for successful collision avoidance.
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There has been extensive research that does bring such collision avoid-
ance within reach. Notably, research on larger UAVs with multi-axis, long
range, high-resolution laser scanners (cf. [3, 4]) allows for successful naviga-
tion in cluttered environments. However, these UAVs weighed more than 75
kg and had to use most of their payload capability to lift the laser scanner.
In this article, we focus on a sense-and-avoid system that can be applied to
UAVs in the range of 500g to 1.5 kg (also referred to as Micro Air Vehicles,
MAVs). Such a small system would allow larger UAVs to use their payload
almost entirely for their mission. Laser scanners have been miniaturized for
use on MAVs by sacrificing both resolution and sensing directions. Scanners
that measure distances to obstacles in a single plane through the MAV are
now part of the most successful systems for indoor flight (cf. [5, 6]). The
range of these scanners is < 30 m, which may not be sufficient for outdoor
flight when the UAV is moving at higher speeds. In addition, for some ob-
stacles such as other air vehicles or power lines, sensing in a single plane is
not enough.

Research on outdoor sense-and-avoid for MAVs has mainly focused on
the use of a camera. It is a passive sensor and as such consumes less energy
than active sensors as, e.g., laser scanners. In addition, a camera can pro-
vide information about a large part of the environment at once, including
obstacles at large distances. Moreover, cameras can be made very light-
weight, up to the order of milligrams. Cameras have been mainly used for
stereo vision (c.f., [7]) and for optic flow (e.g., [8, 9, 10, 11, 12]). Both these
techniques are likely to play a role in final obstacle-avoidance capabilities,
but they also have their limitations. In particular, stereo vision has a lim-
ited range in which it can determine the distance to obstacles. This range
depends on the resolution of the images and the base distance between the
two cameras. The base distance is inherently limited in MAVs, so stereo
vision will only be useful for detecting obstacles at a relatively short range.
The main current limitation of optic flow is that it heavily relies on texture
in the images. As a consequence, obstacle avoidance on the basis of optic
flow fails around many human-built structures, since they can have too little
texture.

Another visual cue that can be exploited for obstacle avoidance is the
relation between non-sky segments in an image and the horizon line. In par-
ticular, non-sky segments located above the horizon line are possible collision
threats [13, 14]. To our knowledge, the use of an obstacle’s protrusion from
the horizon line for obstacle avoidance by UAVs has first been suggested in
[15]. However, in that study no algorithm was developed for actually using
the sky segmentation to avoid obstacles. Instead, sky segmentation was ap-
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plied to a UAV that had to hit a balloon. In addition, the skyline as detected
in the image was taken to be the horizon line. This is incorrect, since these
two are only equal in the case of a completely open terrain: an MAV with a
forward-looking camera close to the roof of a building could easily be fooled
to think that the edge of the roof is the horizon line, resulting in a probable
crash.

The main contribution of this article is the introduction of a feasible ap-
proach to obstacle avoidance based on the segmentation of camera images
into sky and non-sky regions. The approach is named the Sky-Segmentation
Approach (SSA) to obstacle avoidance. The principal challenge for the real-
world success of SSA is to automatically interpret images robustly enough
for use in various environments and fast enough for real-time performance.
If the segmentation performance is adequate, SSA has to interpret the re-
sulting information in terms of directions to possible collision threats and
take corresponding actions.

The remainder of the article is structured as follows. In Section 2 a the-
oretical example with restrictive assumptions is given that allows a rotary-
wing aircraft to successfully, albeit inefficiently, avoid any static obstacle.
The example sets the stage for the rest of the article, in which a strategy for
SSA is devised that takes into account the violations of the aforementioned
assumptions. In Section 3, the main challenge of this approach is addressed,
namely, how to automatically interpret the images robustly enough for use
in various environments and fast enough for real-time performance. In or-
der to achieve robust image segmentation, machine learning is applied to a
large database of images with many different types of skies and obstacles.
From these images, different types of visual features are extracted, among
which most of the features investigated in the literature. In the interest of
execution speed and comprehensibility, decision trees are learned to map the
feature values at an image location to a classification as sky or non-sky. In
Section 4, the learned decision trees are used in simulation to verify the va-
lidity of the obstacle avoidance approach. Subsequently, a preliminary test
on a real platform is performed in Section 5. Subsequently, we discuss the
potential and the limitations of SSA in Section 6. Finally, the conclusions
of the current study are drawn in Section 7.

2 Idealized Sky Segmentation Approach

In this section, we start with a theoretical example of how the ideal imple-
mentation of SSA is able to avoid any obstacle in the path of the MAV. It will
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be explained how a given behavior and five strong assumptions will result in
a system that can avoid any static obstacle while going from place A to B.
This purely theoretical example serves to introduce the main components
and challenges of SSA behavior.

The assumptions are that:

1. The MAV is able to hover in place, yaw, and ascend and descend
without going forwards or backwards.

2. The MAV is able to fly forwards while staying at the same height.

3. There are no obstacles directly above the MAV at location A.

4. The MAV can safely land when arrived at location B.

5. The MAV is able to perfectly segment images into sky and non-sky
regions with real-time performance.

6. The MAV knows its state (attitude and position).

The given behavior is then as follows. At point A, the MAV lifts off and
first yaws until it faces point B. Then it segments the image and uses the
knowledge of its state to project the horizon line into the segmented image.
It determines whether there are protrusions from the horizon line. In an
iterative process, the MAV ascends and segments the image, until there are
no protrusions from the horizon line anymore. This means that at the height
of the MAV’s camera, there are no obstacles until the visible horizon. The
MAV then still ascends hb m., which is larger than the distance from the
camera to the bottom of the MAV’s body. Now the MAV starts moving
forwards. Arrived at location B, the MAV descends. Since after the initial
turning, the MAV only moves (1) up at A, (2) forwards from A to B, and (3)
downwards at B the MAV can only hit obstacles on these trajectories. The
first option is excluded by assumption 3. The second option is excluded since
such an obstacle should have appeared as an protrusion during segmentation
and therefore excluded by assumption 5 and 6. The third option is excluded
by assumption 4. As a consequence, the behavior described above will result
in the avoidance of any static obstacle, given that the assumptions hold.

Of course, the above assumptions are strong, especially assumptions
number 5 and 6. The main challenges involved in SSA are to cope with
the violations of these assumptions in practice. In the remainder of the arti-
cle, methods for segmenting and flying are discussed that take into account
the violation of the assumptions.
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3 Sky Detection

The segmentation of images into the two classes of sky and non-sky is a
rather well-studied subject in the field of MAV research [16, 17, 18, 15, 19,
20, 21, 22, 23, 24]. The goal of the image segmentation is almost always
to obtain an estimate of the horizon line, which conveys information on the
pitch and roll of the air vehicle. As a consequence, most studies contain an
underlying assumption that the MAV is flying quite high in the sky, with few
to no obstacles protruding from the horizon line. The goal of segmentation
in SSA is different, namely it is to detect obstacles that protrude from
the horizon line, which itself may not be visible. As will become clear,
the difference in goals between the current study and past studies will be
reflected in the obtained segmentation results when the camera is not high
in the sky.

The image segmentation method employed in our implementation of
SSA learns the appearance of sky and non-sky of a large publicly avail-
able database of images. In Subsection 3.1 the setup of the segmentation
experiments is discussed. Subsequently, the appearance features extracted
from the images are explained in Subsection 3.2. Most of these features have
been used in the literature before. Finally, the image segmentation results
are shown and analyzed in Subsection 3.4.

3.1 Setup image segmentation experiments

As mentioned in the introduction, the main challenge of SSA is to automat-
ically segment the images robustly enough for use in various environments
and fast enough for real-time performance. With these two criteria in mind,
the following approach is taken to image segmentation.

Machine learning is employed to learn the appearance of the classes of
sky and non-sky in images. As an image collection, the relatively large and
publicly available labelME database is used [25]1. The database contains
a large variety of images from different environments, in which all entities
have been labeled by hand by different persons. Anyone can add images
and help in the labeling process. For the experiments in this article, the
labelME database was downloaded on the 22nd of September 2009. At that
time, 7456 images contained an entity labeled as sky. Many of the images
have been taken in different urban environments, but the database also
contains considerable numbers of images in snowy mountain areas, forrests,
green meadows, seas, etc. Images have been taken under a wide variety of

1http://labelme.csail.mit.edu/
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light conditions at different times of day and in different weather conditions.
From this image set, 6085 images were selected which corresponded to the
idea of sky as employed in SSA. Figure 1 shows eight example images (top
row) together with their labelings (bottom row - white represents sky). The
two rightmost images in Figure 1 were excluded, since the first labels the
branches and leaves of trees as sky, while the second has been taken at night,
a case that is excluded for this study.

Figure 1: Eight example images from the labelME database. The top row
shows the images, the bottom row the ground truth segmentations as la-
belled by human users of the database. The rightmost two images have
been excluded from the database for the experiments.

All images are resized and cropped with the labelME function LMimre-
sizecrop.m to a size of W ×H = 120× 120 pixels. The function first resizes
the smallest side of the image to 120 pixels and then crops the other one.
This procedure maintains the relative scaling of the axes. The image size
is chosen on the basis of the final implementation on the Surveyor SRV-1
Blackfin camera system, which will execute the segmentation algorithm on
160× 120 images.

The first 10% of the images are reserved as the test set, while the re-
maining 90% serve as the training set. From the images in the training set,
the features explained in Subsection 3.2 are extracted. For training, 250, 000
local samples are extracted from all the images in random locations (∼ 45
samples per image). The extracted data is a 250, 000 × n matrix, with n
the number of features. This matrix is saved in the format employed by
WEKA, a publicly available machine learning toolkit that contains many
implementations of different machine learning methods [26]2.

Decision trees are learned with WEKA’s J48 implementation of the C4.5
algorithm [27]. The choice for decision trees has three main motivations.
First, decision trees are computationally efficient, involving a number of

2http://www.cs.waikato.ac.nz/~ml/weka/
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comparisons equal to the depth of the path in the tree that is followed
by evaluating the current local image sample. In addition, only the fea-
tures tested in the current path have to be extracted, leading to a further
speed-up. Second, decision trees of limited tree depth are in general quite
comprehensible. One advantage of this comprehensibility is that it increases
the insight into successes and failures of the image segmentation method,
allowing informed improvements. Third, the proportion of sky-pixels and
non-sky-pixels remaining at the leaf nodes form a measure of uncertainty
about the classification at that node. Of course, C4.5 decision trees also
have disadvantages. For one, they do not make linear combination of fea-
tures, placing class boundaries orthogonally to the feature axes. In addition,
the boundaries placed in the feature space are crisp. This means that small
differences in feature values sometimes lead to entirely different classifica-
tions.

In the experiments, the J48 algorithm uses 90% of the 250, 000 training
samples for training and 10% for testing. This testing is to get a first
impression of the performance of the tree. For J48, the standard settings are
employed, except for the confidence C, which is set to 0.05, and the minimum
number of instances at leaf nodes M , which is set to 2000. Both these
settings stimulate shallower trees that are consequently faster at execution
time and may generalize better to unseen instances.

After training, the classifier is employed to entirely segment all test im-
ages. For all pixels in the test set, the classification is compared to the
ground truth value, leading to a confusion matrix containing the counts of
all true positives and false positives of both the sky and the non-sky classes.

3.2 Features extracted from the images

On the basis of previous studies [16, 17, 18, 15, 19, 20, 21, 22, 23, 24], a
large group of features was selected for extraction from the images in the
labelME database. In addition, some novel features are introduced in this
article. In total 34 features are extracted for each pixel during the training
phase. The J48 decision tree learning algorithm then selects a small subset
of features for execution on the MAV platform.

Features 1-3: Pixel values from the RGB-color space.

Features 4-6: Pixel values from the HSV-color space.

Features 7-9: Pixel values from the YCbCr-color space.
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Features 10-16: Patch features introduced by [19], plus an additional novel
feature. Although originally extracted from all three channels of an
image, here they are extracted from the gray-scale transformed image.
The features are extracted from patches of size l×l (in the experiments
5× 5), containing L pixels. The features are defined as follows in our
implementation:

* Patch mean: m = 1
L

∑L
i=1 pi, with pi as the i

th pixel value.

* Patch standard deviation: s =
√

1
L

∑L
i=1(pi −m)2.

* Smoothness: q = 1− 1
1+s2

.

* Third moment: t = 1
L

∑L
i=1(pi −m)3.

* Uniformity: u =
∑B

b=1 P (b)
2, where P (b) is the probability for

the pixel value falling into a bin b of a histogram that has the
interval [0, 1] (of pixel values) and in the experiments has B = 10
bins.

* Entropy: e = −
∑B

b=1 P (b)log(P (b)).

* Texture: x = 1
L−1

∑L
i=1 |pi − pj |, where pj is the central pixel of

the image patch. This feature is inspired by the work in [28].

Feature 17: The relative y-coordinate of the pixel in the image, y(p)′ =
y(p)
H .

Features 18-21: Gradient features comparable to those used in [18]. The
features are:

* The absolute horizontal gradient: dx = |p(x− 1, y)− p(x+1, y)|,
with p(x, y) the pixel value at image coordinate (x, y).

* The absolute vertical gradient: dy = |p(x, y − 1)− p(x, y + 1)|.
* The absolute combined gradient: dg = dx+ dy.

* The relative absolute gradient: rdg = dg
maxI(dg)

Features 22-24: Gradient features of the blue spectrum. As noted in [22],
when going through the image from the top down, sky pixels become
brighter but less colored towards the horizon line. In the implementa-
tion, the HSV-image is first processed to isolate the blue component.
An image J is formed by J = S(H > 0.475 ∧H < 0.650 ∧ V > 0.15).
Then, the following features are extracted from this one-channel image
J :
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* The horizontal gradient: dbx = p(x− 1, y)− p(x+ 1, y).

* The vertical gradient: dby = p(x, y − 1)− p(x, y + 1).

* The absolute combined gradient: dbg = |dbx|+ |dby|.

Feature 25-26: Relative illuminance features that relate the pixel value
in a grayscale image to the pixel value at a certain percentile of the
cumulative distribution of pixel values in the image:

* i1 =
pi
pm

, where pm in the experiments is at the 75th percentile.

* i2 = pi
pn
, where pn in the experiments is at the 0th percentile

(minimal intensity).

Features 27-28: Corner values vh and vn as obtained with the methods of
[29] and [30]. The intuition behind the introduction of these values is
that corner-like structures should rarely occur in the sky.

Features 29: Grayness feature. A measure of how far the pixel is from the
Cb and Cr values for gray g in YCbCr-images: g = (pCb−0.5)2+(pCr−
0.5)2. The rationale behind its introduction is that it may be used to
exclude colored pixels that are not blue.

Features 30-34: Fisher discriminant features inspired by [23], in which
Fisher discriminant analysis was performed on the RGB-space to ob-
tain a linear recombination of the color channels that separates the
classes of sky and non-sky as much as possible. Including other color
spaces and applying the same method also to only the color channels
of the color spaces results in the following features, of which all weight
values have been obtained on the labelME training set:

* FDRGB = −3.77R− 1.25G + 12.40B − 4.62.

* FDHSV = 3.35H+ 2.55S + 8.58V − 7.51.

* FDSV = 2.77H+ 0.83S − 1.40.

* FDYCbCr = 8.60Y + 25.50Cb− 5.10Cr − 15.45.

* FDCbCr = 19.75Cb− 4.46Cr − 8.18.

3.3 Segmentation methods

The following methods have been applied to the test set of images:
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1. A hand-tuned classifier using the HSV-values. It classifies a pixel p
in an image I as sky, if Vp > 0.7maxI(V) ∧ Hp > 0.4 ∧ Hp < 0.7. In
other words, a pixel belongs to the sky if it is bright and belongs to
the color spectrum from blue to purple.

2. A method that segments the image by applying Otsu thresholding [31]
on the B image channel [18].

3. The same method as above, but applied to the grayscale image.

4. The method of [23], which first transforms each image pixel in the
RGB-space on the basis of Fisher linear discriminant analysis to a
single value FRGB, and then searches for a good threshold on this
value. The search for a threshold is done for each image’s histogram
of FRGB-values. It depends on the presumed proportions of sky and
non-sky in the image and assumes that it is better to take a threshold
value that itself does not occur too much in the image.

5. Inspired by [21], the method of [32] is applied to the images. This com-
putationally rather expensive method extracts many different features
from the image, including Leung-Malik filter bank responses [33] and
information on the vanishing points of the projection. In contrast to
most other methods mentioned in this article, the extracted features
are not evaluated at a pixel level but at the level of color segments
in the image. The algorithm of [34] is used for image segmentation
at different scales, and the classifications from segments at multiple
scales are combined. The algorithm also estimates the location of the
horizon line and uses this in the classification. The method is applied
to the test set with k = 100 (cf. [32]).

6. A J48 tree named ‘HSV-tree’, which is trained on only the HSV-
features. Its performance can be compared with the hand-tuned HSV-
segmenter.

7. A J48 tree named ‘full-tree’, which is trained on all features extracted
from the training images.

8. A J48 tree named ‘tree without y-coordinate’, which is trained on all
features except for feature 17, the relative y-coordinate in the image.
The reason for including this tree is that the nature of the data set
(many photos taken at eye-level) has as a consequence that the rel-
ative y-coordinate carries information on the relation of a coordinate
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to the horizon. This tree can be regarded as segmentation without
information on the MAV’s state.

9. A J48 tree named ‘BF-tree’ trained on features that are easily ex-
tracted from YCbCr-images available to the BlackFin processor, also
excluding the relative y-coordinate. In particular, it can use features
7– 16, 18 – 21, 25 – 29, and features 33 – 34.

The learned trees with corresponding uncertainties can be found at
http://www.bene-guido.eu/guido. To illustrate which features are most
informative, Table 1 shows which features have been selected by the J48 algo-
rithm for classifying instances as sky or non-sky. If the relative y-coordinate
is allowed, it is always selected. As shown later, it makes a considerable
performance difference, indicating that on the long run the state estimate
of the MAV should be an input to the image segmentation process. Fur-
thermore, the Fisher-Discriminant features seem very informative, as does
the novel patch feature that measures the texture. Since the BF-tree is also
used in the simulated and real-world experiments, it is shown in Figure 2.

FD_YCbCr <= 0.58

Cr <= 0.59

FD_YCbCr <= -0.77

Texture <= 0.007

Cr <= 0.49

Texture <= 0.017

Texture <= 0.018

FD_CbCr <= -0.51 FD_YCbCr <= 2.12

Texture <= 0.042

FD_CbCr <= -0.19

i_1 <= 0.66

<= >

Figure 2: The decision tree learned for implementation on the BlackFin. All
features are based on the Y CbCr color space. The left branch represents the
variable check being true (≤), the right branch represents the check being
false (>).

The segmentations of each method are compared with the ground truth
segmentations, leading to a confusion matrix per method. Such a confusion
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Table 1: Features used in the different trees.

Tree Features used
HSV-tree H, S, V
Full tree FDRGB, FDHSV , y(p)′, patch texture and uniformity
tree w/o y-coordinate FDRGB, FDHSV , FDYCbCr , dg, patch texture, standard deviation, and uniformity, i1, g
BF-tree FDYCbCr , FDCbCr , patch texture, Cr, i1

matrix leads to one point on a graph that plots the precision of the sky-
classifications vs. the recall of sky pixels. If possible, we modify parameters
of the methods to generate ROC curves (cf. [35]). In the case of the method
of [32] the certainty threshold for the sky-class is changed. In the case
of the learned decision trees, the thresholds in the nodes of the tree are
changed relative to the standard deviation of the corresponding variable in
the training set. For example, to obtain a result with a higher precision, but
a lower recall, the texture thresholds are all decreased with mσ(texture),
where m = 1 leads to a higher precision and lower recall than m = 0.2. Of
course, m = 0 represents the original tree. All other features have a similar
clear relation to the precision and recall.

3.4 Results segmentation experiments

The results of the image segmentation experiments are shown in Figure 3.
Of course, the goal is to have as much precision and recall as possible, so
methods more to the top right perform better. The best performing method
for a precision lower than 0.80 is that from [32]. It combines information
at many levels and is the only method in the graph that classifies on the
basis of more than local information. However, it is computationally quite
an expensive method, and hence lends itself less well to the application of
MAVs. Above a precision of 0.80 the method is slightly outperformed by
the full tree. The next best methods are in the following order: tree with
no y-coordinate, BF-tree / HSV-tree. The trained HSV-tree outperforms
the hand-tuned HSV-method. The methods that adaptively search for a
threshold in an image on the basis of pixel values all have a very low precision
and high recall (Otsu Blue, Otsu Gray, and Thurrowgood 2009). This is to
be expected, since the proportions of sky in the images of the data set can
be quite low.

Figure 4 shows the proportions of sky ∈ [0, 1] in the images in the test
set. It is perhaps more fair to compare the adaptive threshold methods with
the other ones only on images that have more than ∼ 25% of sky. The
results of this test are shown in Figure 5. The adaptive threshold methods
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Figure 3: Precision vs. recall for the sky class. Results of all methods
mentioned in Subsection 3.3

obtain a much better performance on these images, but still have a lower
precision than the method from [32] and the learned decision trees.
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labelME database.
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Figure 5: Precision vs. recall for the sky class. Results of all methods
mentioned in Subsection 3.3 on images with more than 25% sky.
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4 Simulation Experiments

The simulation experiments have two main goals. The first goal is to form
a first dynamic test for the devised obstacle avoidance strategy. The simu-
lation is quite realistic concerning the movements of the MAV, sensor noise,
etc. and hence may reveal possible problems with the devised strategy.
Successful obstacle avoidance in simulation would be a first validation of
the SSA concept. The second goal is to test the strategy under many dif-
ferent circumstances without endangering the real MAV or third parties.
For example, the differences can be studied between rotary wing MAVs and
fixed wing MAVs.

The remainder of this section is structured as follows. First a strategy for
SSA with a rotary wing MAV is introduced (Subsection 4.1). Subsequently,
this strategy is tested in a few environments for validation (Subsection 4.2).
Finally, we simulate the system that will be used for the real-world experi-
ment (Subsection 4.3).

4.1 Proposed strategy for a rotary wing MAV

In this subsection, a strategy is proposed for employing SSA for a rotary
wing MAV. Although the most efficient strategy for SSA would be to ascend
if there are obstacles in many different directions and deviate if there are
only obstacles in the flight path, here the focus is on an only-ascend strategy.
Deviation is left to future work. First, the MAV’s perception is discussed,
and then the manner in which perception is mapped to obstacle-avoiding
behavior. Again, the context of the strategy is that the MAV has to fly
from a point A to a point B.

The MAV continuously segments incoming images into sky and non-sky
regions. It uses the current state estimate of the pitch and roll (θ̂ and ϕ̂) to
project a horizon line into the image3. The image area above the horizon
line is subdivided into bins, representing angle intervals in which obstacles
can be detected. The number of obstacle pixels in each bin is summed as
a measure of obstacle presence in an angle interval. The uncertainty of all
classifications is summed as well. Please remark that the bins can be placed
either (a) vertically, or (b) orthogonally to the horizon line (see Figure 6).
This corresponds to detecting the relative angle ∆ψ to objects either in
(a) a body reference frame, or (b) in a plane parallel to the ground plane

3Throughout the text we assume that the camera is a perfect linear camera, or that
images have first been undistorted before any further processing. In addition, it is assumed
that the pitch angle is equal to the flight path angle; θ = γ.
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(earth reference frame). The latter is more interesting for obstacle avoidance
with SSA, since rolling and pitching down always cause the appearance of
‘obstacles’ in a body reference frame (namely the earth itself).

Figure 6: Left is an image from the simulator, as viewed by the MAV. In the
center are two copies of the sky (white) / non-sky (black) segmentation. On
the right, the result is shown of the discretization by summing the obstacle
pixels in the bins. In the top row, obstacle pixels are always binned with
vertical bins above half of the screen. As a consequence, the bins represent
the presence of obstacles in a relative yaw-direction in a body reference
frame (∆ψbody). In the bottom row, obstacle pixels are binned in bins that

are orthogonal to the (estimated) horizon line. As a consequence, the bins
represent the presence of obstacles in a relative yaw direction in a earth
reference frame (∆ψearth).

Furthermore, the bin size determines the angular resolution, while the
angular interval captured by the camera depends on the roll angle. To retain
the same angular resolution per bin, one needs to vary the distance between
subsequent bin borders in pixels (∆x) according to the roll angle. The left
part of Figure 7 shows the variables involved in determining ∆x. The goal is
to keep the part of the horizon line constant. In the case of the images with
W = 160 and B = 10 bins, it should be kept at 16.0 pixels. On the basis of
the roll angle ϕ, ∆y can be expressed in terms of a∆x, with a the coefficient.
Then the Pythagorean theorem can be used for determining ∆x. The right
part of Figure 7 shows two segmented images with their corresponding step
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size. The center bin with ∆ψ = 0 is located at the intersection of the horizon
line and the orthogonal line passing through the image center (blue lines in
Figure 7).

W  / B =  16.0 pixels

∆x

∆y

φ

Figure 7: Left: Variables involved in the calculation of ∆x. W is the image
width, B the number of bins. Center and right: Two segmentation images
from the simulator with different roll angles of the MAV. The yaw angle
interval captured by the camera depends on the roll angle. On the left,
the roll is almost 0 degrees, leading to a step size of ∆x = 16.0 pixels
(in the 160 × 120 image). On the right, the estimated roll angle is larger,
necessitating a step size of ∆x = 13.8 pixels to maintain the same angular
resolution per bin. The image center is indicated with a blue circle. The
blue line is the line through the image center orthogonal to the horizon line,
correponding to ∆ψ = 0.

The sums of obstacle pixels and corresponding uncertainties are used
to determine the behavior of the MAV. In particular, the sum of obstacle
pixels over all bins together, Sall, is compared with τall, a threshold that
identifies cases in which there are a lot of obstacles in view. If so, the MAV
should ascend. If not, the sum Sb is evaluated per bin b, with the help of a
threshold τb. The safest strategy is to ascend if any bin is higher than the
threshold. This is safest, since one segmentation provides information on
which relative yaw angle intervals contain obstacles, but does not contain
any information on the distance to the obstacles, nor on the width of open
spaces. Still, in a large majority of cases it is reasonable to assume that
obstacles are detected quite far away. If so, only obstacles in the flight path
of the MAV pose a threat. When following a strategy of first yawing and
then advancing, the center bins represent the angles relevant to the flight
path. If any of the center bins supercede the threshold τb, the MAV should
ascend as well. When ascending, MAV slows down to 0.2 m/s. It does
not attempt to stop completely, since in the current setup the GPS-track is
necessary for heading control.

Importantly, in the simulation experiments the number of obstacle pixels
per bin is low-pass filtered. As a consequence, if the MAV detects an obstacle
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it will ascend slightly more than necessary to put the obstacle at the height
of the camera. As a result, the body of the MAV does not collide with the
obstacle. The low-pass filtering comes at the cost of detecting an obstacle
slightly later. When not flying at too high a speed, this does not pose a
problem.

Finally, the sum of uncertainties over all bins is an indication of how well
the obstacle detection is working. The MAV should not fly with too high
an uncertainty; it can then for example mistake clouds for obstacles, which
could lead to the MAV ascending until its maximum height.

4.2 Validation of SSA in simulation

4.2.1 Experimental setup

For simulation the software gallery SmartUAV is used, developed by the
Technical University of Delft and the DECIS-lab [36]. One of the interesting
properties of SmartUAV is that it can communicate with different autopilots,
such as the in-house developed MAV-pilot and the well-known open-source
autopilot Paparazzi4. SmartUAV is set up to function both as a ground
station that can be used for controlling real MAVs and as a simulator in
which the components of the real MAV can be simulated. All communication
between the simulated MAV and the ground station takes place in the same
way as that between a real MAV and the ground station (over serial ports,
UDP-connections, etc.).

For the validation of the strategy explained in Subsection 4.1, a simu-
lated small helicopter is used. Without discussing the model and inner loop
control in too much detail, it is important to note that the navigation is
performed with the help of a simulated UBlox 4 Hz GPS component. Its
measurements contain simulated noise, including a larger uncertainty of the
height with respect to the North-East location. Furthermore it is notewor-
thy that the state estimate used for projecting the horizon line in the image
is based on simulated gyros, accelerometers, and IR thermopiles as used in
the Paparazzi system. The resulting state estimates have errors comparable
to those under normal flying conditions.

In the validation experiments, two versions of the above-described strat-
egy are tested: (1) the MAV has access to the state estimates, and (2) the
MAV does not have access to the state estimates. In the latter case, the seg-
mentation and obstacle detection assume the pitch and roll to be 0 degrees.
The autopilot then only decides to further ascend if the state estimates θ̂

4http://paparazzi.enac.fr/wiki/Main_Page
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and ϕ̂ are close enough to 0 degrees. The consequence of this scheme is
that due to disturbances, the MAV will use fewer obstacle detection mea-
surements. The inspiration for the second case comes from the fact that
the real-world experiments will be performed with a fixed wing MAV, in
which the segmentation algorithm does not have access to the MAV’s state
estimates.

The simulated experiments take place in a virtual environment of the
campus of the Technical University of Delft. Figure 8 shows an overview
of some of the obstacles in the environment (left) and a view generated
by the simulator as the MAV’s camera image (right). The setup of the
experiments is to fly the MAV to a starting waypoint at which its height is
forced to be 10 m. Subsequently it is ordered to move on a path through
obstacles to a subsequent waypoint. After reaching this waypoint, the MAV
is ordered to move to a height of 10 m again. Subsequently, it leaves for
another waypoint on a path that goes through obstacles again, etc. Figure
9 shows two example way point configurations. The white crosses are the
way points, the blue lines with arrows indicate the flight path and flying
directions between the way points. The configuration on the left is a simple
path in which the MAV has to go from A to B and back again. The path
goes through multiple low buildings, the 14-story building of the faculty of
architecture, and a structure consisting of four tall industrial chimneys. The
configuration on the right has many more waypoints, forcing the MAV to
fly over the obstacles from many different directions.

Figure 8: Left: Obstacles in the simulated environment around the faculty
of aerospace engineering (the blue building). Right: View from onboard the
simulated MAV.

During the experiment, the trajectory and height of the MAV are regis-
tered over time, as is the number of crashes. The performance of a strategy
is determined by analyzing the number of crashes and the height of the
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MAV. Both should be as low as possible, with a larger emphasis on a low
number of crashes. For each strategy a control experiment is performed in
which the MAV is flown at a height well above the highest obstacles (250
m). In this case, the MAV should not further ascend.

Figure 9: Two way point configurations. Way points are represented as
white crosses, the flight paths by the blue lines. Left a single path through
most obstacles, right a more complex patch in which obstacles are ap-
proached from various angles. Stars indicate that the MAV is forced to
regain an altitude of 10 m.

4.2.2 Results

The MAV with access to its state estimate successfully avoids static obstacles.
Generally, it ascends to a height slightly higher than the heights of the
obstacles in its flight path. Figure 10 shows the trajectory of the MAV for
the simple path (left) and the complex path (right).
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Figure 10: Trajectories of the MAV with access to its state estimate on
the simple configuration (left) and on the complex configuration (right).
Coordinates are given with respect to the local tangent plane. No crashes
occurred.
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No crashes occurred during the experiment. The MAV’s height is adapted
to the highest obstacle in its flight path. This can be best seen for the com-
plex path, in which the highest altitudes are reached only when the chimneys
are in sight. Please remark that the MAV detects obstacles at large distances
and typically does not rise to the necessary height at once. This is because
a far-away obstacle disappears under the horizon more and more until it is
below noise level. If the MAV continues its path, the image surface of the
obstacle grows again, until it supercedes the threshold. This explains the
‘steps’ in the trajectories. Furthermore, when it is tested on the control
condition at 250 m (higher than all obstacles) it does not ascend further. Its
average height is h = 249.3 m with a standard deviation of (σ(h) = 0.38).
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Figure 11: Trajectories of the MAV with access to its state estimate on
the simple configuration (left) and on the complex configuration (right).
Coordinates are given with respect to the local tangent plane. No crashes
occurred.

With the same settings, the MAV without access to its state estimate does
avoid obstacles, but ascends too much. It does not crash into any obstacles in
either waypoint configuration, but ascends more than the MAV with access
to its state (see Figure 12). This is confirmed by the control condition with
the way points at 250 m: h = 305.6 m, σ(h) = 29.7. The main problem for
the MAV is the following. If the MAV detects an obstacle (either because
there is one or because of noise), the MAV decelerates by pitching up. If it
ascends far enough, the obstacle is below the horizon (or the noise has past)
and the MAV accelerates back to 10 m / s. It does so by pitching down,
leading to the perception of ‘obstacles’. This iterative process leads to the
MAV continuously ascending. One could set the thresholds for obstacle
detection higher or the maximally allowed pitch and roll angles lower, but
this results in a large number of crashes.

In summary, the concept of SSA is validated by the experiments in sim-
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ulation. In the context of a rotary wing MAV, the use of the state estimates
to project the horizon line is important for finding a good balance between
avoiding obstacles and not ascending too much.

4.3 Fixed wing MAV

In this subsection a fixed wing MAV will be tested in simulation. The main
reason for this is practical: the platform used for the real-world experiment
is a fixed wing MAV.

4.3.1 Proposed strategy for a fixed wing MAV

The case of a fixed wing plane is less suited for SSA than the case of a
rotary wing: a fixed wing will have to take into account its stall speed and
be more actively concerned with its flight envelope protection. In a safety-
first approach, the fixed wing MAV should evaluate the relative pitch angle
to the obstacles ahead, θr. On the one hand, the relative pitch angle can
be smaller than the maximal pitch angle of the plane θmax(α), which is a
function of the angle of attack α. In that case, it should start ascending
according to a pitch angle θ > θr. Given a good segmentation, it is then
certain to go over the obstacles. On the other hand, if θr > θmax, the
MAV will have to deviate in order to avoid the obstacle. In that case,
no guarantees can be given, since a single segmentation does not provide
information on the distances to obstacles5.

The strategy followed by the fixed wing MAV is identical to that of the
rotary wing MAV, except that in this case the MAV does not slow down
when it sees an obstacle (as in the real-world experiment). Furthermore, we
remark that the real-world platform has only one-way communication be-
tween the camera and the autopilot; the segmentation and obstacle detection
procedure do not have access to the autopilot’s state estimates. Therefore,
only the case without state estimates is investigated.

4.3.2 Results

The fixed wing MAV without access to its state estimates has much fewer
false positives than the rotary wing without state estimates. The reason
for this is the smaller perturbation in pitch angle. On the simple path
configuration, the MAV has two crashes, and on the complex configuration

5The only distance cue available in sky detection alone is the variation of the height of
obstacles over time, given that the MAV is oscillating in the height direction. Investigation
of information over time is outside the scope of this paper.
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one crash. Crashes are indicated by the red crosses. In all three cases,
the plane could not avoid an obstacle that had a θr > θmax(α). Perhaps
allowing the MAV to slow down as much as possible, might improve its
performance. Still it seems that a deviation procedure is a necessary tool
for making SSA work on fixed wing MAVs. That the fixed wing had fewer
false positives than the MAV without access to the state estimates, is also
confirmed by the control experiment at a height of 250 m: h = 252.3,
(σ(h) = 0.70).
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Figure 12: Trajectories of the MAV with access to its state estimate on
the simple configuration (left) and on the complex configuration (right).
Coordinates are given with respect to the local tangent plane. Crashes are
indicated with red crosses (two separate crashes for the simple configuration
and one for the complex configuration).

5 Preliminary experiment on real MAV

A preliminary experiment on a real MAV is performed to show the via-
bility of SSA. In Subsection 5.1, the setup of the real-world experiment is
discussed, and in Subsection 5.2 the corresponding results.

5.1 Setup real-world experiment

The left part of Figure 13 shows the fixed wing MAV with which the exper-
iment is performed. It is a modified Easystar, equipped with a Paparazzi
autopilot. On the nose, a Surveyor SRV-1 BlackFin camera is placed (right
part of Figure 13).

The BlackFin camera has been modified so that it can communicate
with a ground station via a 2.4 GHz Xbee communication module. Fur-
thermore, the BlackFin camera have been connected to the autopilot via

23



Figure 13: Left: Fixed wing MAV used for the real-world experiments.
Right: modified Surveyor SRV-1 BlackFin camera mounted on the nose.

ADC-channels. In principle one could send many values over the channels
by encoding them over time. However, if communication speed is essen-
tial, the setup with two ADC-channels implies that the BlackFin camera
can communicate only two values to the autopilot via PWM. Currently, no
communication is possible the other way around: the autopilot cannot send
its pitch and roll estimates to the BlackFin camera.

During flight, the BlackFin camera continuously grabs an image and
uses the YCbCr-tree shown in Figure 2 to segment it into sky- and non-sky
regions. The execution frequency of the segmentation algorithm is ∼ 30 Hz
on the BlackFin. Since the camera has no state estimates, a pitch and roll
of 0 degrees is assumed. The width of the image is divided in 10 bins, and
per bin the obstacle pixels in the top half of the image are counted. The
BlackFin camera sends two values to the autopilot: the maximal bin sum
Sb and the total sum Sall. The SSA signals are in the range from 0 to 3.3
V, and the values are scaled so that they always fall in this range.

Concerning the autopilot, a module has been added to Paparazzi that
receives the mentioned two values from the BlackFin camera, which in Pa-
parazzi belong to the set {0, 1, 2, . . . , 1024}. In the preliminary experiment,
only the maximal Sb is used. If it exceeds a certain threshold and the roll
and pitch angles are in the interval [−5◦, 5◦], Paparazzi will augment the
next waypoint with 0.5 m.

The experiment setup is straightforward: the MAV is ordered to descend
to 30 m at the far end of a parc. Then it has to go to a waypoint at the
start of the parc, where there is a group of trees. The MAV is ordered to
descend to 0 m. Hence, without the obstacle avoidance method, the MAV
would crash into the ground or the trees. In addition, a control experiment
is performed at a height of 190 m. At that height, the MAV should not
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further ascend.

5.2 Results

The fixed wing MAV successfully employed SSA to avoid the trees in its flight
path. Figure 14 shows a screenshot of the Paparazzi ground station of the
test flight. The MAV has almost reached the first group of trees. Figure 15
shows the signal from the BlackFin camera (left). The black line indicates
the threshold for augmenting the waypoint. The right part of Figure 15
shows the height of the waypoint over time.

Figure 14: Screenshot of the Paparazzi ground station during the experi-
ment.

As soon as the plane starts perceiving the trees as protrusions from the
horizon, the way point starts rising. However, if the plane’s altitude is still
higher than the waypoint, the plane will continue descending. Therefore,
the signal from the BlackFin typically increases initially. The plane starts
ascending when the height of the waypoint is higher than the height of the
plane. In the experiment, this happened before the plane reached the trees.
Still, the experiment shows that it may be better to immediately set the
next waypoint to the plane’s height if obstacles are detected. In the control
experiment, the MAV did not ascend further than 190 m, which confirms
the validity of the results.

6 Discussion

In this article, the Sky Segmentation Approach to obstacle avoidance has
been introduced. The current control algorithms use only the results of
sky segmentation as an input for avoiding static obstacles. Here, we first
discuss the limitations and potential of this approach. Then, we discuss the
complementarity of sky segmentation with stereo vision and optic flow.
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Figure 15: Left: Signal from the BlackFin over time, for two approaches of
the trees. Right: Height of the waypoint over time for the two approaches.

The main limitation of SSA derives from the fact that segmentation alone
does not convey any information other than the relative yaw directions to
possible collision threats. The simulations show that a rotary wing using
solely this cue is able to avoid most static obstacles by going over them. A
fixed wing will require at least additional options, such as deviation. Even
if it is likely that further study will improve the efficiency of SSA on the
basis of sky segmentation alone, it will never be sufficient to achieve the
optimal efficiency; the absence of distance information will in certain cases
lead to unnecessary waypoint changes by the MAV. In its current form, SSA
will therefore be a safety-first method. As a consequence, the approach
using only the sky segmentation is not adequate for some applications /
environments. In a truly large city such as New York or Beijing, the MAV
is likely to rise to a height above most of the higher buildings, which leads
to a ground resolution of a possible downward-looking camera that is too
low for the intended application. Besides major cities, mountains can also
be problematic when using sky segmentation alone.

The main potential of SSA derives from the fact that segmenting images
into sky- and non-sky regions is a difficult, but tractable problem. Per-
fect segmentation is not necessary for successful obstacle avoidance. It is
only necessary that the top of static obstacles leads to a number of obstacle
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pixels exceeding the used thresholds. Hence, it allows for an easily imple-
mentable, computationally and memory efficient strategy of reliably going
over obstacles in the MAV’s flight path.

Ultimately, we expect sky segmentation to be best combined with optic
flow and / or stereo vision. Optic flow and stereo vision are cues that work
best at relatively short distances. Sky segmentation works at much longer
distances, allowing the MAV to plan a path around a tall obstacle such as
the industrial chimneys in Figure 6 at an early stage. This saves the MAV
from making abrupt maneuvers close to the chimneys. This will also help
avoiding crashes in more cluttered environments. The work in [37] may form
a starting point for the combination of sky appearance and optic flow.

7 Conclusions

We draw the following conclusions:

1. The Sky Segmentation Approach to obstacle avoidance (SSA) is a vi-
able approach to obstacle avoidance. Simulation experiments show
that a rotary wing MAV setup with two-way communication between
the autopilot and the camera processor gives the best results. One-
way communication from the camera to the autopilot leads to more
false positives and fewer usable detections. Simulation experiments
suggest that the negative effects of one-way communication are more
detrimental for rotary wing MAVs than for fixed wing MAVs. This is
due to the larger variations in pitch and roll for decelerating and ac-
celerating for a rotary wing MAV. Finally, in a real-world experiment
a fixed wing MAV successfully used SSA to avoid a group of trees.

2. The decision trees learned with the help of the labelME database com-
pare favorably to the methods discussed in the literature. They have
a higher precision than methods that employ an adaptive threshold,
especially on images containing little sky. Although the decision trees
typically perform slightly less well than methods such as [32], they are
considerably faster, leading to an execution frequency of ∼ 30 Hz on
the Surveyor SRV-1 BlackFin camera.

Future work certainly includes more experiments in the real world, both
for improving the image segmentation and for improving SSA control strate-
gies. Different configurations should be tried out, such as employing fixed
wing and rotary wing MAVs and having one-way or two-way communication
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between the camera processor and the autopilot. In addition, simulation ex-
periments should be used to gain a more profound insight into the properties
of these configurations and the results of various parameter settings. One
important goal of simulation should be to determine the influence of esti-
mation errors in the state estimates on the performance of SSA. Another
should be to extend SSA to include deviating obstacles instead of only going
over them. Moreover, SSA could be enhanced by combining the segmenta-
tion information with information coming from optic flow and / or stereo
vision. Finally, SSA could be improved by focusing on an omnidirectional
camera instead of a forward looking camera. This would further enhance
the situation awareness of the MAV.
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