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Abstract

In this article we investigate whether an artificial agent can success-
fully perform the complex task of object detection in static natural images.
For this task, we evolve situated agents that map local image samples to
gaze shifts in order to find object locations in the image. We apply the
agents to both a task of mug detection in a domestic environment and a
task of face detection in an office environment. The analysis of evolved
agents shows that they employ sensory-motor coordination to exploit the
object’s visual context. The experimental results show that the situated
agents achieve a detection performance equal to that of existing object
detection methods, while extracting ~50 times fewer local image samples.
This advantage comes at the expense of limited generalisation perfor-
mance: evolved agents exploit the scene-specific contextual clues which
may be confined to a single type of visual environment and may therefore
not generalise to other types of visual environments. We conclude that
the studied situated agents can efficiently and successfully perform object
detection at the cost of application generality.

1 Introduction

Embodied Cognitive Science (ECS) represents a bottom-up approach to artifl-
cial intelligence and has focused for a great deal on minimally cognitive agents.
Central to ECS is the concept of sensory-motor coordination: an agent’s coor-
dination of its closed loop of actions and sensory inputs. For example, sensory-
motor coordination has been shown to simplify classiflcation tasks [1, 2, 3].
Although ECS research gradually progresses towards applying agents to more
complex tasks [4], sceptics have doubts on whether this bottom-up approach
to artiflcial intelligence will scale up. For example, Edelman criticises Beer’s
research in [5] on categorisation through sensory-motor coordination, by stating
that \the target of the analysis - the evolved solution to a toy task - seems to he
hardly worth the efiort.” [6]. The goal of this article is to address this criticism
by developing and applying an ECS-model to the complex task of object detec-
tion in static natural images. By developing a closed-loop model that employs
sensory-motor coordination we aim to show that ECS can contribute to more
complex cognitive tasks.



The existing, open-loop computer vision approaches to object detection (e.g.,
[7, 8,9, 10, 11]) are still outperformed by human vision. A partial explanation
for this might lie in the fact that sensory-motor coordination plays a central
role in human vision [12], whereas it does not in an open-loop approach. This
suggests that it might be advantageous to employ sensory-motor coordination
in a computer vision approach to object detection. In this article, we focus
on the following research question: Can an artiflcial agent successfully perform
the task of object detection in static natural images by means of sensory-motor
coordination? We consider an agent successful, if it can perform at least as
good as existing open-loop object detection methods on the same task.

To answer the research question, we evolve and study situated agents (in-
spired by [13, 14, 15]) whose sensory inputs are local image samples and whose
actions are gaze shifts in the image. The goal of the agents is to center their
gaze on object locations. To test whether the situated agents can be applied
to difierent object detection tasks, we apply them to two tasks: the detection
of mugs in a domestic environment and the detection of faces in an o—ce en-
vironment. The main characteristic of both tasks is that the visual context of
the objects is relatively constant. We selected the tasks on this characteris-
tic, since the agent’s sensory-motor apparatus enables it to exploit the visual
context for localising an object. We use the mug-detection task to investigate
whether and how evolved situated agents can employ sensory-motor coordina-
tion for object detection. In order to obtain a reliable estimate of the situated
agent’s performance relative to existing object detection methods, we need a
larger set of images than is available for the mug-detection task. Therefore we
compare it with three difierent existing object detection methods [9, 10, 16] on
the face-detection task for which su—cient images are available.

The remainder of the paper is organised as follows. In Section 2 we describe
our situated object detection approach. Then, in Section 3, we describe the
experimental setup. In Section 4 we analyse whether and how the evolved
situated agents employ sensory-motor coordination. In addition, we address the
difierence in performance and computational efiort between the situated agents
and an existing open-loop object detection method [7]. We present a reliable
estimate of the performance difierence with other methods on the face-detection
task in Section 5. In Section 6 we discuss the implication of our experimental
results, and in Section 7 we conclude on our research question.

2 Situated Object Detection

In our situated approach to object detection, the detection of an object becomes
a process over time that involves a sequence of sensory inputs and motor actions.
Before we go into the details regarding the type of sensory inputs and manner
of action selection used in our experiments (see Section 3), we give a general
overview of the object detection process.

One step of this process is illustrated in Figure 1. At the flrst time step
(t = 1) of a ‘run’, the agent’s gaze is initialised at a random location in the



image. The agent takes a local sample from the image by extracting features
from a square window centered at the gaze location (indicated by an ‘X’ in
Figure 1). Henceforth, we refer to this window as the ‘fovea’. The extracted
features are the sensory inputs of the agent. The agent’s controller transforms
the extracted features to a motor command, representing a gaze shift in the
image (dashed line in the flgure). At the new gaze location (‘0’ in the flgure),
on t = 2, the agent extracts new features and determines a new gaze shift. The
agent performs a sequence of feature extraction and gaze shifting steps until
t =T. The goal of the agent is to have the gaze location on an object at ¢t = T,
where T is an experimental parameter (see subsection 3.5).
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Figure 1: lllustration of a step in the situated object detection process. The
agent obtains sensory inputs by extracting features from a square window of
gray values in the image. This window, referred to as the fovea, is centered at
the gaze location (‘x’). The agent’s controller maps the sensory inputs to a gaze
shift in the image (dashed), determining the next gaze location (‘0’).

How can the situated agent learn to control its gaze in such a way that it
ends up at an object location at ¢ = T"? One possibility is to use a supervised
learning scheme in which the agent learns a mapping from its sensory inputs
to an ideal gaze shift that immediately ends up at the object location, as in
[17]. However, this training method has the problem that it does not allow an
optimal use of sensory-motor coordination, since it excludes non-greedy gaze
strategies. Therefore, we opt for a second possibility, namely optimising the
agent’s controller with an evolutionary algorithm [18]. An evolutionary algo-
rithm enables the optimisation of the agent’s controller, taking into account the
entire chain of actions and sensory inputs during a run. There is an additional
reason why employing an evolutionary algorithm is useful. Namely, if the agent
is to flnd a class of objects, the sensory inputs should contain some informa-
tion on the location of such objects. Therefore, the features should capture
properties of both the object and its context. Since these properties can vary
for difierent object classes and visual scenes, we also optimise the manner in
which features are extracted from the fovea [19]. Employing an evolutionary
algorithm allows the simultaneous optimisation of both the agent controller and
the feature extraction.



3 Experimental Setup

In this section, we describe the experimental setup. First, we discuss the prop-
erties of the agent, its feature extraction and controller (Subsection 3.1). Then,
we give details on the evolutionary algorithm (Subsection 3.2) and we provide
information on the mug-detection task (Subsection 3.3) and face-detection task
(Subsection 3.4). Finally, we provide the experimental parameter settings (Sub-
section 3.5).

3.1 Agent

In this subsection, we discuss the implementation of the situated object-detection
agent for the experiments. First we explain the agent’s feature extraction, and
then we discuss the agent’s controller. Finally, we discuss an extension to the
agent, of which preliminary experiments proved the necessity.

For the feature extraction, we adopt the integral features as introduced in
[7], because they are efiective and easy to compute. The evolutionary algorithm
can select a speciflc feature to be extracted from the fovea, by selecting two
locations in the fovea to form any rectangular area and selecting any of nine
possible input types that are shown in the top part of Figure 2. The value of a
feature is the mean gray-value of the image pixels under the white area minus
that of the pixels under the grey area. As an illustration, the bottom part of
Figure 2 shows a feature of the flrst type that covers a large part of the right
half of the fovea. The value of this feature is the mean gray-value in image
area B minus the mean gray-value in image area A. This feature will respond
to vertical contrasts in the right half of the fovea.
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Figure 2: Possible feature types (top part of the flgure) and an example feature
of type 1 shown in the scanning window (bottom part of the flgure). The value
of a feature corresponds to the mean gray-value of the image pixels under the
white area minus that of the pixels under the grey area.

As the agent’s controller, we use a fully connected feedforward neural net-
work. As a result, the agent is reactive: it always selects the same actions
for the same sensory inputs [1]. The network has n input neurons that are
set to the values of the extracted features, 4 hidden neurons, and two output
neurons. The hidden and output neurons have sigmoid activation functions:
f(x) = tanh(x). There are two output neurons that encode the actions as rela-



tive shifts (¢x, ¢y) in pixels in the image, as follows: ¢z = |o01j|, €y = |027],
where j is the maximum number of pixels for a shift.

In our experiments, we employ two agents: one specialised in locations re-
mote from the object and one specialised in locations in the vicinity of the object.
The reason for using two agents, rather than one, is twofold. Firstly, at difierent
distances from an object, difierent visual features are important. Evolving a dif-
ferent agent for distances close to the objects allows the agent to be sensitive to
such difierent visual features. Secondly, previous experiments have shown that
evolving agents at difierent distances and putting them in sequence results in a
good detection performance [17]. We put the agents in sequence as follows. The
‘remote’ agent starts at a random location in the image and performs gaze shifts
until ¢t = T. Then, the ‘near’ agent continues at the end position of the remote
agent, performing gaze shifts until ¢ = 27. In each experiment, we evolve the
remote agent at uniformly distributed positions in the image and measure its
average distance to an object at the end of a run. Then we evolve the near
agent at positions close to the objects, according to a normal distribution with
its mean on the object center and its standard deviation equal to the average
distance to an object reached by the remote agent.

3.2 Evolutionary Algorithm

We employ a ‘u, A’ evolutionary algorithm [20] to optimise both the feature
extraction and the neural network controller of the agent. Evolution starts with
a population consisting of X individuals. An individual is encoded by its genome,
a vector of real values (doubles). Each feature is represented by flve values, one
for the type, four for the two coordinates inside the fovea. Each weight of the
neural network is encoded by one value. Thus, the genome consists of 5n genes
for the feature encoding, plus (h(n+1)+o(h+n+1)) genes for the neural network
(including bias weights). We evaluate each individual by letting it perform R
runs per training image, each of 7' time steps. The fltness function we use for
each individual ¢ is deflned as:

f(@@) = recall(z) + (1 — distance(7)) )

Where recall() is the average proportion of objects detected by the ensem-
ble of R runs. An object is detected if the agent’s gaze location is on the
object. distance(s) is the average distance to the closest object during a run
divided by the maximal distance in the image (taken to be \/width? + height?).
The distance-term is included to bootstrap evolution. After evaluating all in-
dividuals, we select the 1 agents with the highest fltness values to form a new
generation. The best individual is tested on the validation set of images. This
fltness value is recorded, so that we can select the best individual of the entire
evolution at the end of evolution. Each selected individual has A\/u ofispring,
so that the population size stays the same over time. In producing ofispring,
there is a p. probability that one-point cross-over occurs with one of the other
selected individuals, and a (1—p¢) probability that the genome is simply copied.




Afterwards, the genes of the new individual are mutated with a probability of
pm. When a feature gene is mutated, it receives a new random value in the
interval [0,1]. When a weight gene is mutated, the new weight is determined
on the basis of the old weight as follows: wnew = woig + r®w, Where r is a
random number in the interval [-1,1] and Cw is the change rate. The individ-
uals of the new generation are again evaluated on the images of the training set.
The process of fltness evaluation and procreation is continued for G generations.
Since a change in the features has disruptive efiects on the usability of the neural
controller, we choose to only evolve features in the flrst half of evolution. The
second half of evolution is dedicated solely to the optimisation of the neural net-
work weights. At generation G/2 we change the evolutionary parameters in the
following manner. For the optimisation of neural network weights, cross-over
might be disruptive [21]. Therefore, we set p; to 0. In addition, we divide the
value of pm, by two at every generation g for which mod(g,¢) = 0, with ¢ an
integer value < G/2. Finally, we also change the fltness function to:

f' (@) = recall(4) (©)

in which we discarded the distance term from equation 1. We did this because
the distance-term was only meant for bootstrapping evolution.

After evolving the remote agent, we measure its average distance to the
closest object. We use this value when we evolve the near agent. The near
agent is evolved in the same manner as the remote, except for two difierences.
The flrst difierence is that its initial position in the images is not a random one,
but is determined as follows. We randomly select an object in the image and
then position the agent at a random location in the vicinity of the object as
specifled in subsection 3.1. The second difierence is that we use an alternative
fltness function that does not change during evolution:

g(@) = precision(i) + (1 — distance(s)) 3)

The fltness function g focuses on precision, the average proportion of the R runs
that are located on an object at the end of the run. We include the distance-
part, because we want the near agent to approach the nearest object as closely
as possible.

At the end of evolution, we select as best agent, the agent that has the
highest weighted sum of its fltness on the training set and validation set. These
fltness values are weighted according to the respective sizes of the training and
validation sets. This procedure aims to prevent overfltting to the training set.

3.3 Mug-detection Task

The mug-detection task is a task in which the situated agent has to detect mugs
in a domestic environment. The task involves a set of 74 gray-scale images of
1024 x 980 pixels, containing photos of a domestic environment, where mugs can
be located either on the table or in the window. 80% of the image set is used
for evolution (60 images) and 20% for testing (14 images). Of the 80% used for



evolution, 80% forms the training set (48 images) and 20% the validation set
(12 images). Our results are based on a 5-fold validation scheme.

The mug-detection task is challenging because of the small image set: there
is a large variation in object appearance, but there are few examples to learn
from (around 80 objects in the set used for evolution). However, the context in
which mugs occur is rather constant (for example, they do not oat in the air).
Figure 3 shows some examples of mugs in the dataset (all are image patches of
120 x 120 pixels). There are many difierent mugs that are sometimes occluded
or rotated (out-of-plane), and there are also some distractor objects that might
even fool a human observer, such as the candle in Figure 3 (right object in the
third image patch).

P = g

Figure 3: Examples of mugs and distractor objects in the mug-detection task.

3.4 Face-detection Task

Although the image set of the mug-detection task is challenging enough, it might
be too small to provide a reliable comparison between the situated agent and
existing object detection methods. Therefore, we perform this comparison on a
real-world face-detection task that has been studied before in [10, 9]. In those
studies, three object detection methods were applied to the face-detection task:
the Viola and Jones object detector [7], the Froba-Killbeck detector [16], and a
version of the Viola and Jones detector that always includes a part of the object
context in object detection (see [10] and [11]). All three are window-sliding
object-detection methods: they check for object presence within a window on
all locations of a regular grid on the image. The FGNET-dataset for this task
is publicly available (see http://www-prima.inrialpes.fr/FGnet/) and contains
images from a video sequence in a meeting room. For our experiments we used
the joint set of images from both cameras (‘Cam1’ and ‘Cam?2’) in the flrst scene
(‘ScenA’). We converted the 794 images of 720 x 576 pixels to gray-scale images.
For the FGNET-dataset we use a 2-fold validation scheme. The face-detection
task has similar properties to the mug-detection task, although there are more
examples to learn from.

3.5 Experimental Settings

In our experiments, we set the number of time steps to 7" =5, and the number
of runs to R = 20. The agent extracts 10 input features from the fovea. For
the neural network, n =10, h =5, and o = 2. Its weights are restricted to the
interval [—2,2]. Furthermore, the maximal allowed shift j is equal to half the
image width for the remote agent, and equal to one third of the image width
for the near agent. The size of the raw input window is one third of the image



width for the remote agent, and one fourth of the image width for the near
agent. The evolutionary parameters are as follows: A = 100, x = 25, G = 300,
pec = 0.5, pm = 0.04, ¢w = 0.20, and ¢ = 8. The settings of the experimental
parameters are based on preliminary experiments.

4 Mug-detection Task

In this section, we flrst analyse the sensory-motor coordination of the agents
evolved on the mug-detection task (Subsection 4.1). Then, we turn to their
performances (Subsection 4.2).

4.1 Analysis

Our aim is to analyse whether and how the evolved situated agents employ
sensory-motor coordination to detect mugs in the images. We perform our
analysis on the best agents evolved on the flrst training fold, and start with the
remote agent, whose gaze is initialised at random locations in the image.

We can answer the question whether the situated agent employs sensory-
motor coordination by looking at its behaviour. Namely, without sensibly coor-
dinating its sensory inputs and motor actions, a situated agent will not perform
better than selecting random locations. Figure 4 shows the behaviour of ten
independent runs of the remote agent. Each gaze shift is illustrated with an
arrow. The last gaze locations of the runs are marked with a circle. The only
mug in the image is indicated with a rectangle. The object in the window in
this image is a photoframe. Clearly, the evolved agent employs sensory-motor
coordination to some extent. The flgure shows that the ensemble of ten runs
succeeds in locating the only object in the image (the number of runs is lower
than the twenty used during evolution for illustration purposes). Three out of
the ten runs succeed in localising the mug in the image, while the other seven
runs end up at image locations that are likely to be object locations, i.e., on the
table and in the window.

We now proceed by investigating how the situated agent coordinates its
sensory inputs and motor actions. To this end, we flrst analyse the agent’s
sensory inputs and then its mapping from sensory inputs to motor actions.

The evolved sensory input features capture properties of the object’s context.
Figure 5 shows the ten evolved input features. The features are projected on
an image from the training set and shown at their locations and with their
sizes within the fovea (white box). The white cross indicates the center of
the fovea. In order to interpret the evolved features, we extracted them at all
possible gaze locations within the image and stored their values. We scaled
these values to obtain ‘feature responses’ in the interval [0,1]. Figure 6 shows
the responses of the difierent features on all possible gaze locations in the image
shown in the bottom right. Light regions mark high responses, dark regions
low responses. Figure 5 and 6 illustrate that the agent uses contextual clues
to find the object. This was already suggested by Ballard [14] who stated that



Figure 4: Ten runs of the best evolved remote situated agent of the flrst fold.
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Figure 5: The ten features evolved for the mug-detection task, shown within
the scanning window (white box). The white cross indicates the gaze location.

a small object such as a cup can be found by flrst detecting a larger object
such as a table or a lamp and then exploiting its typical spatial relation to the
smaller object. It is important to note that the evolved situated agent does not
explicitly recognise other objects, since it bases its gaze shifts only on visual
input features. However, these features capture properties of large objects that
are relevant to object locations. For example, feature 9 (see Figure 5) detects a
large horizontal contrast just below the gaze location. This feature is useful in
detecting the transition between the oor and the table and wall in the images:
its response (Figure 6) forms a gradient from the oor to the table and wall.
Feature 2 and 3 seem to be suitable to find the table or window above the gaze
location. The response of feature 2 is maximal at the table and the window,
while feature 3 has a high response under the table and window. Finding the
table or window enhances the agent’s chances of subsequently flnding the object,
since the mugs are usually located on the corresponding at surfaces. Besides
coarse contextual clues, the agent also exploits more detailed features that also
seem to be object-related. A nice example is feature 5 (Figure 5) that detects



diagonal contrasts. It has a large response if the gaze location is to the top-right
of the lying chair on the oor (Figure 6). The lying chair is present in many of
the images, and is a good indicator of the table position. Note that the evolved
situated agent can also detect mugs if the chair is not present (see Figure 8).

Response feature1 ~ Response feature 2  Response feature 3 ~ Response feature 4

g =

Response feature 5 Response feature 6  Response feature 7 Response feature 8

i

Response feature 9  Response feature 10 Original image

Figure 6: Responses of the ten features shown in Figure 5 in difierent parts of
the image.

To further show that the agent developed input features that carry informa-
tion on the position of an object, we verifled whether there is a relation between
clusters of sensory inputs and the direction and distance to an object. To do
this, we gathered local samples in the training set by extracting the evolved
features at 30 random gaze locations in each training image (leading to 1440
input samples) and storing the relative distance from the gaze location to the
closest object. We clustered the samples with k-means clustering, £ = 4. Then,
we mapped every sample to the nearest cluster centroid and stored the relative
distances for all the samples belonging to a cluster. For each cluster, we can
show the relative spatial distribution of inputs belonging to that cluster with
respect to the closest object. Figure 7 shows these spatial distributions for the
four clusters (the order of the clusters is irrelevant) along with the proportion
of sensory inputs belonging to them. The closest object is shown in the mid-
dle of every inset with a white cross, and white regions indicate regions where
the input cluster has a high probability of occurring (black regions indicate the
opposite). The flgure shows that the clusters of inputs occur either above or
under the closest object at difierent distances.

The next step in the analysis is to study the agent’s mapping from its sensory
inputs to its motor actions. The agent exploits the relative spatial distributions
of the sensory inputs, but takes into account the entire chain of inputs and
actions.

The arrows in Figure 7 represent the direction and size of the gaze shifts
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Cluster 1, p(c =1)=0.14 Cluster 2, p(c =2) =0.32

Cluster 3, p(c =3)=0.32 Cluster 4, p(c =4) =0.22

Figure 7: Relative spatial distributions of the four input clusters. White indi-
cates high occurrence, black low occurrence. The cross in the center represents
the object location. The arrow is the action taken by the agent, when the in-
put is equal to the cluster centroid. The arrow originates at the median of the
relative x- and y- coordinates of the cluster.

taken by the agent when it is provided with the cluster centroids as inputs.
The arrows originate from the median relative position of the corresponding
cluster of sensory inputs. Clearly, the actions depend on the relative spatial
distributions of the sensory input clusters. However, the agent does not seem to
apply a greedy action policy: the ideal greedy action would shift the gaze from
any position directly to the object position. Therefore, a greedy action policy
should at least have resulted in a larger gaze shift for the flrst input cluster.
The smaller shift make more sense if the agent makes more steps to reach
an object location. This fnding suggests that the agent balances exploiting
current information with gathering more information by means of its actions
(see [22, 23, 24, 3] for examples of studies on the relation between actions and
information gathering).

In spite of the actions shown in Figure 7, one can have doubts whether the
agent is very sensitive to the relative spatial distributions of sensory inputs.
Namely, the flgure also shows that most of the sensory inputs are located below
the nearest object. The prior distribution of object locations in the images of
the mugs task is such, that mugs mostly occur in the top half of the image
(and more often to the left). If the agent were to receive no sensory inputs,
its best action would be to move up and slightly to the left. This raises the
question whether the agent learns more than the prior distribution of object
locations. The agent only receives extracted visual features and does not employ
any proprioception with information on its position in the visual scene. It can
therefore not exploit the prior distribution of objects directly. However, it can
exploit this prior distribution indirectly. If the sensory inputs contain little or
no information on the object location, it can select an action that is based on
the prior distribution of object locations. The action taken by the agent when
provided with the cluster centroid of cluster 2 (Figure 7) shows that the agent
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is not insensitive to the spatial relation of the speciflc input type.

In order to further show that the agent does not just learn a prior distribu-
tion, we applied the agent to a manipulated image in which we copy and pasted
the table so that its location is lower in the image (opposite to the best a priori
action). Figure 8 shows the actions taken by the agent at all points of a grid
in the image. It illustrates that in general the agent takes actions towards the
table, even if it is located in a direction opposite to the best a priori action. A
few of the actions go in the wrong direction (see the top left corner), because of
local sampling.

Figure 8: Actions taken by the agent in difierent parts of the image, for a
manipulated image in which the table is located lower in the image.

The analysis of the remote agent clarifled in what manner the evolved situ-
ated agents employ sensory-motor coordination to detect objects. However, it
also showed that the evolved remote agent mainly succeeds in flnding the correct
y-positions in the image. The near agent, evolved for initial gaze locations that
are closer to the objects, exploits object context at a flner scale. It is primarily
tuned to properties of the object itself and is useful for determining the exact
location of the nearest object. Figure 9 shows the actions taken by the near
agent in the vicinity of an object. From this flgure it is clear that the agent can
approach objects on a flner scale.

Figure 9: Actions taken by the near agent for gaze locations near the object.
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Table 1: Performance on the mug-detection task.

recall in % (o) | false positives / image (o)
remote agent 56.7 (14) 18.4 (0.5)
sequential agent 68.1 (6) 16.7 (0.5)
Viola and Jones 34.4 15.0
sequential agent + VJ 31.9 2.0

4.2 Performance

We now turn to the quantitative performance of the evolved agents. Table 1
shows the performance in terms of recall (proportion of objects that are de-
tected) and number of false positives per image on the mug-detection task. A
false positive is a location that is mistakenly considered as an object location.
The results are averaged over all flve experiments of the folded test, with stan-
dard deviations between brackets. The remote agent alone achieves an average
recall of 56.7% at the cost of 18.4 false positives and the sequential agent (re-
mote and near agent together) achieves a recall of 68.1%, at the cost of 16.7 false
positives. In order to evaluate this performance in relation to a state-of-the-art
object detector, we trained a Viola and Jones-classifler for the flrst fold of the
mugs task. We employed the supervised training scheme explained in [7] that
trains the classifler to discern between samples containing the object or contain-
ing the background. The classifler evaluates object presence at all points of a
regular grid in the image on the basis of the same type of features as used by
our approach. The performance of this classifler is shown in the third row of the
table. At an approximate equal number of false positives as the situated agent,
it detects only half as many objects. The situated object-detection agent com-
pares favourably to the Viola and Jones object detector. However, the number
of false positives is still very high: an average of 16.7 false positives per image
as compared to an average of roughly two objects per image. The main problem
that remains for the situated agent is that it cannot recover from local minima
that do not contain an object. Therefore, we extend it by applying the Viola
and Jones classifler at the end of a run. The results of this extension are shown
in the fourth row of the table. Recall is almost as high as that of the Viola and
Jones classifler alone, but the average number of false positives is much lower.
Importantly, this performance is obtained while extracting far fewer local
samples. The situated agent uses R(27") local samples, where R is the number
of runs and T the number of time steps per type of agent (remote / near).
R(2T — 1) of these samples are used for reaching the flnal gaze location and R
for verifying the presence of objects with the Viola and Jones classifler. In our
experiments R = 20 and 7" = 5, so 200 local samples are used. The Viola and
Jones classifler checks object presence at all points of a G; x G5 grid, resulting
in the use of G;G2 local samples. In our experiments G; = Gy = 100, so
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10,000 samples are used. While using 50 times fewer samples, the situated
object-detection approach still outperforms the Viola and Jones classifler on
the mug-detection task. The computational efiort saved is considerable, but
depends on the type of features that are extracted.

5 Face-detection Task

Analysis of the agents evolved for the face-detection task gives results similar
to those for the mug-detection task. However, the larger image set of the face-
detection task allows more reliable performance estimates. In this section, we
therefore focus on comparing the situated agent’s performance with that of other
methods.

In the fleld of object detection, it is common to illustrate detection perfor-
mance with an FROC-plot. This plot shows the trade-ofi between recall and the
average number of false positives per image. Since most object-detection meth-
ods use a binary classifler in some stage of the object-detection process, such
an FROC-curve can be constructed by varying the threshold of the classifler. A
lower threshold implies more detections, but also more false positives. A higher
threshold implies fewer false positives, but also fewer detections. Because the
situated object-detection agent does not always use a binary classifler, it is less
obvious how we should construct the FROC-curve. Although we have multi-
ple options for generating an FROC-curve (e.g., changing the fltness functions),
we choose to generate the FROC-curve by varying the number of independent
runs R on the test images (R € {1,3,5,10,20,30}). More runs will result in
higher recall and more false positives, while less runs will result in lower recall
and fewer false positives. Figure 10 shows the FROC-curves of the difierent
versions of the situated agents (square markers) and of the three open-loop ob-
ject detection methods studied in [10, 9]: the Viola and Jones object detector
[7] (‘o’-markers), the Froba and Killbeck-detector [16] (‘+’-markers), and the
detector introduced in [10] (‘x’-markers). The experimental results from [9] are
shown with thin lines, the results from [10] with thick lines.

A better object detector will have an FROC-curve that is more to the top
left of the flgure: it achieves high recall with few false positives. Figure 10
shows that the situated object-detection agent outperforms the naive applica-
tion of the Viola and Jones classiflers and the Froba-Killbeck classifler, while
performing slightly worse than the approach of Kruppa et al. The main reason
for the fact that the Viola and Jones classifler and Froba-Kdllbeck classifler are
outperformed by both the situated agents and the method of Kruppa et al., is
that the latter two methods exploit context in their object detection. Although
the faces in the FGNET data set can have very difierent appearances, there is a
relatively flxed context. For example, Kruppa’s method exploits the presence of
shoulders below the face as an indication for the presence of a face. The evolved
situated agents additionally exploit properties of the meeting room, such as the
fact that the walls are relatively homogeneous (as they often are in o—ce en-
vironments). The agents follow the wall downwards, while being attracted by
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Figure 10: FROC-curve for the results on the FGNET face-detection task from
difierent studies.

head-like shapes. The exploitation of context leads to a higher robustness in
object detection (this was also observed in [10, 11]).

Interestingly, the Viola and Jones classifler achieves difierent performances
for the studies [10] and [9]. There are several possible explanations for this, since
there are slight difierences between the studies (slightly difierent sets selected
from the FGNET video sequence, labelings, and parameter settings). However,
the difierence that might best explain the difierence is that in [10] the training
set consists of images that are not part of the FGNET data set. This implies
that it is di—cult to very accurately compare the results from the difierent
studies. However, they are reliable enough to conclude that the situated agents
perform at par with state-of-the-art object detection methods on the FGNET
face-detection task.

6 Discussion

In this section, we flrst discuss the disadvantage of the situated approach to
object detection. Then, we discuss the experimental results in light of the
criticism that ECS tackles simple tasks.

The advantages of the situated object detection approach (robust detection
and computational e—ciency) come at the expense of application generality.
Since the situated agents exploit visual properties of the object’s context in
a visual scene, it becomes dependent on these properties for object detection.
Therefore, we cannot expect a situated agent evolved on the FGNET data set
to detect faces in random images from the web. The extent to which application
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generality is limited is an issue that deserves further research.

In the introduction we motivated our research on situated object detection
by referring to the criticism that ECS only concerns toy tasks. Beer already
responded to this criticism by arguing that minimally cognitive agents (that
tackle simple tasks) could be as insightful for cognitive science as frictionless
models have been for physics [25]. Therefore, one could wonder whether the
empirical results reported in Section 4 and 5 help in addressing the criticism. We
believe they do, for the following two reasons. First, the task of object detection
in static natural images cannot be argued to be a toy task, since existing object
detection methods still are not successful compared to human performance.
Scaling ECS up to object detection in static natural images might perhaps
not add much to the functioning of situated agents as frictionless models, but
at least it takes away this criticism on the approach. Second, the empirical
results show that situated object detection performs at par with state-of-the-art
object-detection methods on the FGNET dataset, while being computationally
more e—cient. The presented results are not yet convincing enough so that
engineers will apply situated object detection instead of more classical methods,
but the results illustrate the potential of situated object detection to become
an engineering tool for object detection. We consider it important to continue
developing situated object detection, because this efiort can provide us with
empirical evidence for the advantages of situatedness in visual tasks such as
object detection. In addition, it can provide us with concrete examples of how
sensory-motor coordination can play a role in object detection tasks that humans
face as well.

7 Conclusion

We conclude by stating that the studied (artiflcial) situated agents can employ
sensory-motor coordination to successfully perform object detection in static
natural images. The results show that sensory-motor coordination allows for
robust object detection, because of the exploitation of an object’s visual con-
text. The situated agents perform at par with existing window-sliding object-
detection methods, while being computationally more e—cient. This compu-
tational e—ciency results from the fact that sensory-motor coordination allows
e—cient selective extraction of local image samples.
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