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To obtain my M.Sc. in Knowledge Engineering at the IKAT in Maastricht, I 
have performed research on Evolutionary Robotics, a methodology that 
optimises robot controllers with evolutionary algorithms. Part of the research 
for the thesis has taken place at the CNR (Consiglio Nazionale della Ricerca, 
Rome), enabling me to collaborate with Dr. S. Nolfi, an expert in the area of 
Evolutionary Robotics. My supervisors at Universiteit Maastricht were Prof. 
dr. H.J. van den Herik and Prof. dr. E.O. Postma. 
 
In my thesis I have focused on a bottom-up approach to artificial 
intelligence, called Embodied Cognitive Science. As a consequence of the 
bottom-up approach, research has emphasised reactive agents. These agents 
always respond in the same way to the same sensory inputs. It has been 
proven that these simple agents can perform complex tasks by exploiting 
sensory-motor coordination: the agents use their actions to obtain 
advantageous sensory inputs. To reach higher agent capabilities, research 
focus is currently shifting from reactive to pro-active agents. The actions of 
pro-active agents do not only depend on the inputs, but also on the “internal 
state”. An internal state represents a form of memory of the agent’s past 
sensory inputs. Typically, a pro-active agent has a recurrent neural 
controller. A large variety of such controllers has been proposed, but it is not 
yet clear in what way the different neural controllers influence the agent 
capabilities. Therefore, it is also not clear what the next step should be in the 
bottom-up approach to artificial intelligence. 
 
Our research question was: how are a pro-active agent’s capabilities 
influenced by its recurrent neural controller? To answer the research 
question, five typical recurrent neural networks were applied as controllers 
of a simulated Kephera robot in three different robotic tasks.  
 
Our conclusion is that the capabilities of a pro-active agent are determined 
by the mechanism that realises an internal state in its recurrent neural 
controller. We discern three such mechanisms: recurrency, neural inertia, 
and adaptable time delays on the neural connections. Neural controllers that 
employ the mechanisms of neural inertia or adaptable time delays, lead to 
agents that can exploit regularities on variable time scales. Specifically, 



these mechanisms offer the agent the ability to determine when sensory 
inputs influence the outputs. The mechanism of recurrency alone is not 
sufficient to obtain this ability.  
 
Illustrative example 
With an example we illustrate why an inability to determine when sensory 
inputs influence the outputs leads to lower agent capabilities. One of the 
tasks requires from the agents that they self-localise in an environment at 
various speeds. The figure shows two screenshots of the environment. The 
left part of the figure involves an agent controlled by a Nonlinear 
AutoRegressive model with eXogenous inputs (NARX), while the right part 
involves an agent controlled by a Continuous Time Recurrent Neural 
Network (CTRNN). The agents have to indicate with an output neuron 
whether they are located in the light grey room or the dark grey room. To 
exemplify the limited capabilities of an agent that cannot determine when 
the inputs affect the outputs, we discuss the way in which the agents notice 
that they enter the bottom room. 
 
The CTRNN-agent (right) uses its internal state to indicate in what room it is 
located. In particular, its fourth hidden neuron is part of its internal state and 
determines the activation of the self-localisation output. The CTRNN-agent 
uses its neural inertia to notice when it enters a new room. Neural inertia is a 
mechanism in which the neural activation changes with a certain speed, 
determined by evolution. We discuss the transition to the bottom room. The 
activation of the agent’s fourth hidden neuron slowly decreases in a corridor. 
Since the activation increases again in a turn, the agent can be said to 
“measure” how long the current corridor is. The agent can determine when it 
enters the bottom room, since there is only one corridor in the environment 
that is long enough to allow the activation of the hidden neuron to decrease 
to zero. In particular, the self-localisation output indicates the bottom room 
when the fourth hidden neuron decreases below 0.5. The fourth hidden 
neuron is shown in the bottom of the figure and a dashed circle shows the 
moment in which the agent indicates the bottom room. 
 
The NARX-agent (left) uses its self-localisation output, which is part of its 
internal state, to “remember” in what room it is. However, the agent does not 
use its internal state to recognise when it has to change its localisation. 
Instead, it uses sensory-motor coordination to obtain unambiguous 
information about its location. We again discuss the transition to the bottom 
room. In the corridors the NARX-agent makes heavier “swings” than the 



CTRNN-agent. The agent’s movements in the long corridor illustrate this 
best. The swings of the NARX-agent serve to determine approximately 
where the bottom room is. Namely, there is only one place in which the 
agent approaches the wall to its left without being in a turn: in the middle of 
the long corridor. In that moment the internal state changes abruptly, as 
illustrated by the change in activation of the self-localisation neuron in the 
bottom of the figure.  
 
The experiments suggest that NARX-agents have lower capabilities than 
CTRNN-agents, because no successful NARX-agents have been evolved at 
higher speeds. The higher required speed restricts the possibilities to make 
swings in the corridors and NARX-agents do not produce a strategy with 
slowly changing neural activations. The CTRNN-agent however can still 
perform well at the task at a higher speed, since its neural inertia is adjusted 
to decrease faster. In other words, the agent can determine the time scale on 
which the inputs experienced in the corridor lead to an indication of the 
bottom room. 
 

 
 

Figure: The left agent has a NARX-network, the right agent a CTRNN. Lines represent walls, small 
cylinders are obstacles. The dotted circles indicate when the agents change their internal state. Below the 
environments, the most important neural activations are shown. ‘SL’ stands for the self-localisation neuron 
of the NARX-controller, ‘H4’ is the fourth hidden neuron of the CTRNN-controller.  
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