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Abstract

An evolutionary robotics approach to the task of odor source lo-
calization is investigated. In particular, Continuous Time Recurrent
Neural Networks (CTRNNs) are evolved for odor source localization
in simulated turbulent odor plumes. In the experiments, the simulated
robot is equipped with a single chemical sensor and a wind direction
sensor. Two main contributions are made. First, it is shown that a
single CTRNN is able to successfully localize an odor source under tur-
bulent conditions. It performs all three phases of the task: (i) finding
the odor plume, (ii) moving toward the odor source, and (iii) identi-
fying the odor source. Second, the analysis of the evolved behaviors
reveals two novel odor source localization strategies. These strategies
are successfully re-implemented as finite state machines, validating the
insights from the analysis of the neural controllers.

1 Introduction

Odor source localization is a well-studied topic in the field of robotics. Ro-
bust strategies for autonomous odor source localization may serve many ap-
plications ranging from the localization of gas leakages to that of people
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trapped in collapsed buildings. For space agencies, the application of inter-
est is the autonomous localization of odor sources on other planets such as
Mars [8, 19, 29, 22, 17].

The odor source localization task is generally stated to consist of three
sub-tasks: (i) finding the odor plume, (ii) following the odor plume up to the
source, and (iii) recognizing the odor source. The difficulty of odor source lo-
calization heavily depends on the context. For example, a factor that strongly
influences the task’s difficulty is the way in which odor is dispersed. At low
Reynolds numbers, where viscosity dominates, diffusion results in smooth
variations of the odor concentration. This allows the use of localization
strategies that attempt to move up the concentration gradient [12, 25, 26].
At medium to high Reynolds numbers, advection and turbulence determine
the way in which the concentration changes over time. As a consequence,
the odor plume can become patchy, with pockets containing local maxima
of odor concentration. Under such turbulent conditions, common for most
robotic applications, gradient search strategies tend to fail. Other contextual
factors determining the task’s difficulty include the robot’s sensory apparatus
and computational capabilities.

Many odor localization strategies have been proposed for the different
possible contexts (see the surveys in [18, 13]). Coarsely, two main approaches
can be discerned in the literature. The first is a probabilistic approach to
odor source localization (cf. [5, 33, 38, 28, 27]). Probabilistic strategies
employ a ‘belief map’: a spatial map that keeps track of the probabilities
for source presence. The robot’s movements can be determined such as to
reduce the uncertainty on the source location. This strategy has been named
‘infotaxis’ [38]. It is successful in the difficult context of turbulent conditions
and a sensor suite consisting of a single chemical and wind sensor, but the
computational complexity of the algorithms can be considerable.

The second approach draws inspiration from biology. For example, odor
source localization algorithms have been based on the strategies of bacteria
(E. coli) [6], dung beetles (G. stercorarius), and silkworm moths [20, 21, 4,
26, 35]. The algorithms generally can be interpreted as finite state machines
with in each state simple reactive rules to the incoming inputs. Therefore, the
algorithms are computationally efficient. A drawback of biological strategies
is that suitable behavior for the animals on which they are inspired may not
be a suitable behavior for the robot. Moreover, this approach may be hard
to apply to an environment that is very different from the ones in which
animals have been evolved. For extraterrestrial environments such as Mars,
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this may be the case.
An alternative approach to the above ones is to heuristically optimize

controllers for the specific context of the odor source localization task. This
‘Evolutionary Robotics’ (ER) approach [32] to odor source localization is
of interest for the following reasons. First, it permits the development of
computationally efficient solutions. Often in the field of ER small neural
networks are used as controllers, such as feedforward neural networks or
Continuous Time Recurrent Neural Networks (CTRNNs) [1]. Despite their
limited computation, small neural network controllers have been shown to
tackle various relatively complex tasks by means of sensorimotor coordination
[31]. Second, having a heuristic optimization of the controllers will result
in strategies that depend on the specific context and not so much on the
designer’s bias. This may lead to novel and robust strategies that have not
been designed or observed before.

The present work is not the first application of the ER approach to odor
source localization. It has first been studied in [3, 20]. Later, in [14, 15], the
approach is used in order to shed more light on the neural circuitry underlying
the klinotaxis behavior of C. Elegans, which performs a gradient ascent search
under low Reynolds conditions. All the previous studies employed simplified
models of odor dispersion, with a smooth gradient to the source of either the
concentration [3, 14, 15] or the probability of detecting odor particles [20].

In this article, the generalization of the ER approach to the more difficult
case of a turbulent odor plume is investigated. In addition, it is investigated
for the first time whether the neural network can perform all three phases
of odor source localization. Specifically, the ER approach employed in this
study optimizes the weights and time constants of a CTRNN with an evolu-
tionary algorithm for performing a simulated odor source localization task.
The sensor suite of the simulated robot is rather minimal, consisting of one
chemical sensor and a wind sensor. Experiments are performed for both low-
turbulent and high-turbulent scenarios, leading to two main contributions.
First, it is shown that in both cases the CTRNN is able to successfully per-
form all three subtasks. It is able to find and follow the odor plume, while
recognizing when it is close to the source. The evolved behaviors show robust
performance under various conditions. Second, both for the low-turbulent
scenarios and high-turbulent scenarios, the analysis of the evolved behaviors
reveals odor source localization strategies that have not been treated in the
literature before.

The remainder of the article is organized as follows. In Section 2, the
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experimental setup is explained. Then, the experiments on low turbulence
(Section 3) and high turbulence (Section 4) scenarios are presented. Finally,
conclusions are drawn in Section 5.

2 Experimental Setup

The odor source localization experiments are performed in simulation. In
this section, first the simulated environment is explained, followed by the
robot and its neural controller. Finally, the setup of the optimization with
an evolutionary algorithm is discussed.

2.1 Simulated Environment

For the behavior of the odor plume over time, a model is used that was
made specifically for simulating methane spreading on Mars [30]. The model
simulates the methane concentration at points in space and time taking into
account reactions which release the substance, advection which carries the
plume as a whole downwind, and molecular and turbulent diffusion responsi-
ble for vortices and small-scale turbulence. The methane source is modelled
as a fixed location in the environment at which instantaneous methane release
occurs at a given frequency (1

6
Hz) in the experiments.

The model was used to generate two sets of scenarios: low turbulence and
high turbulence. Figure 1 shows the methane concentration in an example
low-turbulence scenario (left) and high-turbulence scenario (right), both with
a simulated area of 80m×80m. The most important observation to be made
from the figure is that the methane model correctly captures the property
of turbulent plumes that puffs of odor travel down the plume, with the con-
centration gradient not always leading toward the source. In addition, there
are many areas in the plume with little to no odor concentration. This being
said, the difference between the two scenarios is that the low-turbulence sce-
nario involves a more diffuse plume than the high turbulence scenario. Robot
controllers were evolved on both cases (Section 3 and 4).

As mentioned in the introduction, the robot will have to learn how to
search the plume. If the environment has only one source, it may be prob-
lematic to learn a search behavior. If the robot does not start in a fixed po-
sition, it may perform a correct search behavior, but never find the methane
plume. For example, when starting above the single plume shown in Figure
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Figure 1: Left: Methane concentration in a low-turbulence scenario. High
/ low methane concentrations are represented by dark / bright pixels, re-
spectively. The circle has a radius of 6m and is centered on the methane
source. The box in the right part of the environment is the area in which
robots are initialized during evolution (see Subsection 2.4). Right: Methane
concentration in a high-turbulence scenario.

Figure 2: Illustration of the random toroid concept. The simulated plume
(area within the dotted box) is embedded in a larger area by putting a fixed
size border (solid box) around it with no methane concentration. When the
robot crosses a border (see the dashed path in the figure), it reappears at
a random coordinate at the other side of the environment. Effectively, the
robot is then searching in a much larger area with many unevenly spaced
methane sources.
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1 while facing the wind, a good search strategy such as moving cross-wind
to the right will make the robot go further up. Although it will never find a
plume, searching cross-wind is known to be optimal in the absence of other
knowledge [35]. For this reason, the simulated environment contains not one
source, but a large number of distinct methane sources at different locations.
Because generating an enormous environment with multiple sources would
be computationally prohibitive, a random toroid world is introduced. Figure
2 illustrates the concept. The simulated methane plume is placed in a larger
area, by creating a border around it. In the border area, the odor concentra-
tion is 0, while the wind is distributed similarly to the center area containing
the plume. When the robot crosses a border such as the one on the top,
it does not reappear exactly at the opposite side as would be the case for
a normal toroid world. Instead, it reappears at a random x-position. This
effectively implies that the robot moves in a large environment with many
unevenly spaced methane sources1. The difficulty of the search task depends
on the ratio of the plume area that can be sensed by the robot divided by
the total area including the border. In the experiments, the border is set to
b = 20m on all sides.

2.2 Robot

The robot is modelled as a non-holonomic vehicle with two wheels, which can
only move forward. The robot is located in two-dimensional space (x, y) with
a heading, ψ, velocity, v, and angular velocity, ψ̇. The velocity and angular
velocity of the robot are both limited, with v ∈ [0, vmax], vmax = 0.4m/s and
|ψ̇| ≤ 0.5 rad.

The robot only has sensor readings expressed in a body frame. While the
successful moth odor localization strategies use two chemical sensors and a
wind sensor (cf. [20, 21, 26, 35]), the experiments in this article focus on the
more difficult case of having only a single chemical sensor and a wind sensor
(cf. [11, 38, 10, 23]), both placed at the center of the robot. Having a single
chemical sensor is more difficult, since it does not allow to determine an
instantaneous chemical gradient. Below, the measurements of the chemical
and wind sensor are explained in more detail.

1In a normal toroid world the methane sources would be evenly spaced, implying that
they have a fixed spatial relation to each other. A robot could then easily scan the entire
arena just by keeping a fixed angle with the wind.
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The experiments in this article are not intended for a specific robot setup.
Instead of modelling the performance of a particular gas sensor, it is assumed
in the robot simulation that the sensor can measure the concentration rel-
atively accurately above a threshold concentration, and has a refresh rate
of 2Hz. These assumptions appear to be reasonable given the current state
of gas sensor research [34, 11, 24, 39]. Specifically, the odor concentrations
of the methane model described in Section 2.1, are mapped to the set of
integers C = {0, 1, 2, . . . , 255}. This was done to reduce memory require-
ments for storing the model matrices over time, and to limit the resolution
of the concentration sensor. Furthermore, depending on the experiment, a
threshold Cthr is used, below which all measurements are mapped to 0.

It is assumed that the robot is equipped with a wind sensor that is able to
determine the wind direction. The sensor performs measurements at 2Hz.
This setup is closely matched by commercially available wind sensors (cf.
[13]).

2.3 Neural Network Controller

The robot is controlled by a Continuous Time Recurrent Neural Network
(CTRNN). The main motivation for using this type of network instead of for
example a feedforward neural network is that the controller has to explicitly
identify the odor source. For the identification of the source it may be nec-
essary to integrate sensory information over time, which is a capability that
CTRNNs are known to possess (cf. [9, 2, 7, 37]). The network used in the
experiments receives 4 sensory inputs and consists of 10 hidden neurons and
4 output neurons. Figure 3 shows the connection structure. Arrows between
the boxes around the neural layers indicate that they are fully connected.
The hidden layer is fully connected to itself via recurrent connections.

From the single chemical sensor and single wind sensor, four sensory in-
puts s are distilled to serve as input to the CTRNN:

s1 =
c− cf
cf

(1)

s2 = 2

(

cf
cmax

)

− 1 (2)

s3 = 2

( |atan2(−uy,−ux)− ψ|
π

)

− 1 (3)
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Figure 3: Connection structure of the CTRNN transforming the sensory
inputs s into the output activations o. Each layer of neurons is represented
with a box. An arrow implies that the layer is fully connected. The hidden
layer is fed back to itself.

s4 = 2

( |atan2(−uy,−ux)− (ψ + π
2
)|

π

)

− 1 (4)

where sj is the j
th input, c is the odor concentration sensed by the robot at

it’s current location, cf is a low-pass filter of the odor concentration (see Eq.
5), cmax is the maximum odor concentration that can be measured with the
chemical sensor, and ux and uy are the strength of the wind in the x and y
directions, respectively, at the robot’s current location. We use the negative
of the wind vector so that s3 is equal to zero when the robot is heading
directly into the wind. cf is updated each time step (0.5s) using:

cf ← 0.9cf + 0.1c (5)

and is initialized to 1.0. Since cf is updated immediately after c, there can be
no division by zero in the calculation of s1. Moreover, the maximal possible
s1 occurs when cf is (close to) zero and the robot encounters the maximal c:
max(s1) = 255/25.5 = 10.

Inputs s1 and s2 convey information about the odor concentration and the
concentration gradient. s1 indicates whether the robot is moving up or down
the concentration gradient by subtracting cf from the odor concentration
sensed by the robot. This is divided by cf to ensure that s1 remains within a
similar range regardless of the absolute concentration at the robot’s location.
s2 is cf normalized by the maximum possible odor concentration.

Inputs s3 and s4 convey information about the angle between the wind
direction and the robot’s heading (figure 4). We use the magnitude of the
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s3

s4

Robot heading

Wind direction

Figure 4: Illustration showing how sensory inputs s3 and s4 are calculated
from the wind direction and robot heading. s3 and s4 are normalized to the
range [−1, 1].

angle between the wind vector and the robot heading vector, and the magni-
tude of the angle between the wind vector and a vector perpendicular to the
heading vector. This representation prevents discontinuities in input values
as the robot rotates.

All hidden neurons have an activation that changes over time according
to the equation [3, 1]:

τiẏi = −yi +
N
∑

j=1

wjiσ(yj + θj) +
M
∑

k=1

wkisk(t) (6)

where yi is the activation of the ith hidden neuron, τi is the neuron’s time
constant, N is the number of hidden neurons, M the number of sensory
inputs, wji is the weight of the connection between the ith neuron and the
jth neuron, σ is the activation function, θj is a bias term, wki is the weight
between the kth sensory input and the ith neuron, and sk(t) is the value of the
kth sensory input at time t. In our case, σ is the hyperbolic tangent function.

Each output is calculated as follows

oi = σ

(

N
∑

j=1

wijσ(yj + θj) + θi

)

(7)

where oi is the ith output, σ is the hyperbolic tangent function and θi is a
bias term applied to the output. The outputs are in the range [-1,1].

The velocity and heading of the robot are updated using the outputs as
follows

v =

(

o3 + 1

2

)

vmax
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ψ̇ =

(

o2 − o1
2

)

ψ̇max

where vmax and ψ̇max are the maximum velocity and angular velocity of the
robot respectively and positive ψ̇ corresponds to the robot turning left. o4 is
used to identify whether the robot is at the odor source, as will be explained
in the next subsection.

2.4 Evolutionary Optimization

The weights and time constants of the CTRNN were optimised using the
‘simple genetic algorithm’ from the open-source PyGMO/PAGMO package
[16]. The population size µ is 30 and the number of selected individuals
for reproduction is λ = 6. Selection was performed according to a roulette
scheme, where the probability of selection P of individual i is equal to:

P (i) =
max(C)− C(i)

∑µ

j=1
(max(C)− C(j)) , (8)

where C(i) is the cost function evaluated for individual i, and max(C) is
the worst performing individual of the generation. The best performing in-
dividual is copied once directly for insertion in the new generation (one elite
individual). Its remaining offspring and the offspring of the other selected
individuals are created under influence of exponential crossover (with a prob-
ability of Pc = 0.1 per offspring) and Gaussian mutation (with a probability
of Pm = 0.03 per gene in the genome). The evolution carries on for 400
generations. All weights were restricted to the interval [−2, 2]. The time
constants were encoded as 1

τ
∈ [0, 1].

The evolutionary optimization was performed by evaluating the individu-
als on three different scenarios that all have the same amount of turbulence,
but have been generated with different random seeds. During evolution, each
individual performs two ‘runs’ per scenario, leading to a total of R = 6 runs.
Each run commences with the initialization of the robot at a random location
in the right-end of the field (with x ∈ [56, 80] and y ∈ [0, 80]). As a con-
sequence, the robot always starts relatively far from the source, while being
above, in, or below the plume. The robot’s heading is intialized randomly in
[−π, π]. The robot then starts acting and sensing at 2Hz until the simulation
ends at T = 1200s.

The cost function minimized by the evolutionary algorithm consists of
multiple components. In particular, it is a weighted sum of
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1. The distance from the robot to the source at the end of the run (dt=T (i, S),
where S is the source).

2. The negative average concentration sensed by the robot −c.

3. A negative bonus if the robot at any point on its trajectory passes at
a distance smaller than 6m to the source (−B1).

4. A negative bonus if the robot succeeds in staying within 6m of the
source to the end of the run (−B2).

5. An evaluation of how well the robot ‘identifies’ the source. The identifi-
cation of the source is evaluated by determining the mutual information
between a ‘binarized’ version of the identification output of the neural
network (O4 = (o4 ≥ 0)) and a binary variable Q representing whether
the robot is inside or outside of a circle of 6m around the source. The
mutual information between these variables is indicated with I(Q;O4)
(see Eq. 9).

Component (1) in the list above can be considered as the main goal for search-
ing the plume and following it to the source. Components (2-4) have been
included in the fitness function in order to facilitate evolutionary learning.
For example, component (2) is especially important at the start of evolution
to reward individuals that find the plume. Later during evolution, the com-
ponent stays of importance, as there is on average a higher concentration
of odor close to the source. For the identification component (5), mutual
information was chosen as a performance measure [36]:

I(Q;O4) = H(Q)−H(Q|O4) = (9)

−
∑

q∈Q

P (q)log2(P (q)) +
∑

o∈O4

P (o)
∑

q∈Q

P (q|o)log2(P (q|o)) (10)

The motivation behind mutual information is that it leaves the robot free in
its manner to identify the source. It could equally well do so with a high
as with a low output o4. In addition, the mutual information I(Q;O4) is
zero when the robot never passes close to the source. As a consequence,
the optimization of the identification output only becomes important later
during evolution, when the robots solve the task of finding the odor source.
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More formally, given a number of runs R, the cost function C for an
individual i is defined as follows:

C(i) =
1

R

R
∑

r=1

Cr(i), (11)

Cr(i) = wddt=T (i, S)− wcc− B1 −B2 − ws

I(Q;O4)

H(Q)
(12)

Please note how the mutual information in Eq. 12 is normalized by the
entropy H(Q), which maps the term to the interval [0, 1] (assuming 0

0
= 0).

Concerning the weights of the components, preliminary experiments led to
the following settings: wd = 1, wc = 2, B1 = 50, B2 = 50, and ws = 150.

Experiments will be performed both for low turbulence scenarios (Section
3) and high turbulence scenarios (Section 4). The low turbulence scenarios
already have patches of odor moving downwind, but still have a rather diffuse
plume. In the high turbulence scenarios, the odor forms filaments of patches
moving downwind, without a diffuse plume. The low turbulence scenarios
are expected to be easier to solve.

For each type of scenario, 6 different evolutionary runs will be performed.
During each evolutionary run, the best individual of each generation is stored
in a file. After evolution, all these individuals are post-evaluated on the
three training scenarios with R = 30 (ten runs per scenario). The individual
with the lowest average cost is then selected as the best individual of that
evolutionary run. These best individuals are tested on a separate, fourth test
scenario. All test results mentioned in the following sections are obtained on
the low-turbulence / high-turbulence test scenarios.

3 Low turbulence scenarios

Experiments have been performed on the low turbulence scenario with a
concentration measurement threshold Cthr = 0 and Cthr = 20. Both types of
experiments provided successful solutions. However, in this section the focus
will be on Cthr = 0, since it resulted in an interesting and novel strategy
for odor source localization under relatively mild conditions. The setting
of Cthr = 20 makes the plume as sensed by the robot much patchier and
essentially results in the same type of strategy that will be discussed for the
high turbulence scenario in Section 4. Please note that with Cthr = 0, on
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Table 1: Performance on the low-turbulence scenario.

C dt=T P (dt=T ≤ 6m) I(O4;Q)/H(Q)

1 −262(±60.2) 1.36(±4.96) 0.985 0.558(±0.166)
2 −289(±75.8) 2.60(±8.68) 0.974 0.731(±0.158)
3 −198(±96.6) 5.15(±11.8) 0.889 0.577(±0.253)
4 −272(±42.0) 3.19(±12.3) 0.953 0.693(±0.198)
5 −262(±83.2) 3.22(±9.46) 0.958 0.631(±0.180)
6 −283(±80.8) 2.52(±8.59) 0.968 0.674(±0.159)

average 22.0% of the environment contains odor that can be sensed by the
robot.

3.1 Results

For the low turbulence scenarios with Cthr = 0, all six evolutionary runs re-
sulted in successful odor source localization. Table 1 shows the performances
of the best individuals on the test scenario, with R = 1000. The table shows
the average fitness C, but also the average distance to the source at the end
of the run dt=T , the proportion of times that the robot is close to the source
(≤ 6m) at the end of the run P (dt=T ≤ 6m), and the normalized average
mutual information I(O4;Q)/H(Q).

The best fitness is obtained by evolution number 2, with an average per-
formance of C = −289. This individual, referred to as robot 2, on average
ends up at d = 2.60m from the source, while being closer than 6m to it
in 97.4% of the cases. Although robot 1 scores slightly better on these two
criteria (dt=T , P (dt=T ≤ 6m)), robot 2 is best at identifying the source. It
has an average I(O4;Q) = 0.731.

Figure 5 shows a typical run of robot 2. The robot’s trajectory is rep-
resented with circle markers, while the dashed circle represents a distance
of 6m to the source. White markers correspond to an output o4 ≥ 0, while
black markers correspond to o4 < 0. The underlying image is a snapshot of
the plume at the end of the simulation. The robot starts the run at a loca-
tion ‘above’ the plume. It then starts searching obliquely cross-wind toward
the bottom left. At t = 117s, the robot senses the plume and subsequently
starts moving upwind to the source. The robot enters the 6m distance circle
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at t ∼ 275s. It first circles around the source, to finally come to a stop while
indicating with o4 < 0 that it has arrived at the source (as shown by the
black markers)2.
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− 20
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80
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t  =  100

t  =  200

t  =  300t  0t  =  1100

Figure 5: Typical run of the best evolved individual in the low turbulent
scenario.

The capability of robot 2’s strategy to find the source while starting from
other locations than the ones used in evolution is tested as follows. The robot
is initialized at all locations of a 80 × 80 grid in the environment consisting
of the simulated plume, excluding its border (R = 6400 runs). For each
initialization location, the robot performs the odor localization task and the
components of the cost function are stored in 80×80 matrices. The left part
of Figure 6 shows the final distance to the source from 0m (white) to 13.8m
in the top image and 484m in the bottom image (black). The top image was
generated under normal conditions with the random toroid world and the
bottom image was generated with a single odor plume in an infinite world.
The main observation from the figure is that at most positions the robot
succeeds in approaching the source quite closely, with many more bright
than dark values. Furthermore, in the case where there is a single plume in
an infinite world, the shape of the whitest area is related to the location of

2For a video of the robot’s behavior the reader is referred to http://www.youtube.

com/watch?v=6IOOkIv3sX8&list=PL5B4AE2F9652E581C. Please note that in the video,
the robot starts from a different initial position.
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the averaged plume. The asymmetry of the coarse plume shape is caused
by the robot’s search strategy. Since the robot searches by moving to the
bottom left on the map, it will find the plume if it starts above and to the
right of it, but will miss the plume if it starts below or to the left of the
plume.

The right part of Figure 16 shows whether the individual ends up at the
source (white), does not end up at the source but passes close to it at some
point of its trajectory (gray), or does not pass close to the source (black),
with the top image generated under normal conditions and the bottom image
generated for a single plume in an infinite world. In the top image, the white
area covers almost the entire area, with the robot locating the source from
all but two of the starting locations.

3.2 Analysis

The main goal of the analysis is to find out what strategy the evolved robots
follow to find and recognize the odor source. The six different evolutions on
the low turbulence case all resulted in similar strategies, and therefore the
analysis focuses on the best performing solution, robot 2. The analysis is
subdivided in the three sub-tasks of odor source localization: plume search,
plume following, and source identification.

3.2.1 Plume Search

The first phase of the odor source localization task is to search the plume.
In order to investigate robot 2’s searching strategy, it is placed in an envi-
ronment without odor source and a constant wind going from left to right.
R = 10 runs are then performed, initializing the robot at random locations
with random starting headings. For each run, the wind direction with re-
spect to the robot’s heading is stored for time steps t > 200. Figure 7 shows
a histogram of the wind angles during the search behavior. The mean wind
direction is −51.9◦, with a standard deviation of 5.0◦. The robot follows a
fixed heading with the wind when searching for a plume. This means that
it always moves obliquely cross-wind. The other evolved controllers on the
diffuse case also move with fixed, albeit different, angles to the wind. In an
environment with randomly distributed odor plumes of finite extent, perpen-
dicular cross-wind search (± ∼ 90◦) leads to the shortest search times [35].
The slight up-wind movement during search in the low turbulent scenario
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Figure 6: Left: Distances to the source at t = T are shown at all initial
positions of a 80×80 grid in the environment. The top image was generated
under normal conditions with the random toroid world and the bottom image
was generated with one single plume in an infinite world. In the top image
the final distances range from 0 (white) to 13.8 (black). In the bottom image
the final distances range from 0 (white) to 484 (black).Right: Whether the
robot ends up at the source (white), does not end up at the source but passes
close to it at some point of its trajectory (gray), or does not pass close to
the source (black). The top image was generated under normal conditions
with the random toroid world and the bottom image was generated with one
single plume in an infinite world

might be due to the initialization during evolution downwind of the source.
Another possibility is that the search direction is a compromise between a
good search behavior and a good behavior for when the robot ‘looses’ the
plume during the plume following behavior.

3.2.2 Plume Following

When the robot has found the plume, it starts moving toward the source.
A first question to be answered is whether the robot in doing so follows
the concentration gradient. To test this, the robot is run while at each
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Figure 7: Wind angles during robot 2’s search behavior when it does not
sense any odor.

location of its trajectory over time the concentration gradient is determined.
The direction up-gradient ψ′

c is then represented with respect to the robot’s
heading ψ, as ψc = ψ′

c−ψ. It can vary from −180◦ to 180◦, with a heading of
0◦ implying that the robot is exactly following the gradient. Concentration
gradient measurements are only retained if the robot is moving faster than
0.01m/s.

Figure 8 shows a histogram of the gradient direction over R = 30 runs.
The main observation is that the robot does not follow the concentration
gradient. Surprisingly, it actually seems to move roughly perpendicular to
the gradient, as there is a peak at ∼ 80− 110◦.

Observation of the robot’s behavior for different initial locations leads to
the following explanation of its strategy. Since the robot searches downward,
it will typically encounter the plume from the top. After finding the plume,
the robot attempts to stay roughly perpendicular to the concentration gra-
dient, which means that it follows an isoline of the plume. In particular,
the robot seems to turn to the right when the concentration increases and
to the left when it decreases. This results in isoline following on the top of
the plume. However, if the robot keeps following the same isoline, it will
go toward the source, around it, and then back again away from the source.
The robot does not do this, and actually turns stronger to the left when it
has wind in the back. As a result, the robot does not go away from the
source, but steers toward it. As a consequence, the robot spirals in toward
the source. The robot seems to use the high concentration close to the source

17



−200 −150 −100 −50 0 50 100 150 200
Heading with respect to gradient direction

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

N
u
m

b
e
r 

o
f 

sa
m

p
le

s

Figure 8: Robot heading with respect to the concentration gradient. If the
robot followed the concentration gradient, it would have a relative heading
of 0◦.

for reducing its velocity and coming to a stop.
The rather fixed reactions to concentration increases and decreases lead

to a less efficient strategy when starting in the bottom of the plume. The
robot will actually first move to the top of the plume and then start following
the isoline again3. Concentration decreases encountered in the bottom half
of the plume will cause the robot to make full left-turning loops, because the
leftward turn is generally not countered by a concentration increase.

The explanation above is corroborated by the correlation between sensory
inputs and the motor actions. For example, the correlation coefficient4 r
between sensory input s1 and o1 at the same time t is r(s1, o1) = 0.23 while
r(s1, o2) = −0.52. This means that if s1 increases, ω decreases, and the robot
turns more to the right. The average concentration sensor s2 is similarly
correlated with o1 and o2, with r(s2, o1) = 0.91 and r(s2, o2) = −0.17. Wind
direction sensor s3, which has activation 1 when the wind comes from behind,
has a stronger positive correlation with o2 than with o1: r(s3, o1) = 0.17 and
r(s3, o2) = 0.22. This implies that wind from the back will lead to an increase
of ω, which makes the robot turn more to the left.

The strategy can be nicely illustrated by runs during which the odor

3The robot moves to the top of the plume without making rightward circles. Although
an increasing concentration makes the robot turn more to the right, the wind direction
experienced when moving to the top of the plume counteracts this rightward turning.

4r is defined as r(a, b) = E[ (a−a)(b−b)√
var(a)var(b)

]
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Figure 9: Runs of robot 2 in environments with a static odor plume. Top:

Two runs in an environment with an artificial plume. Bottom: Two runs
in an environment with a static plume that is a ‘snapshot’ of on of the low
turbulent scenarios.

concentration is kept static. Figure 9 shows two different environments, with
corresponding concentration isolines. Per environment, two runs are shown,
one starting high in the plume and one starting low in the plume. In the
completely artificial plume on the top, one can see that the robot moves
to and subsequently follows the isoline of concentration level ∼ 20.0. The
figure on the bottom is a ‘snap shot’ of one of the simulated low-turbulent
scenarios. For both starting conditions, the robot finally ends up at isoline
∼ 20.0, goes around the source, and then steers toward it. Please note that
in the static environment, the robot circles less frequently, since there are
no puffs of odor moving past (with the associated concentration rises and
drops). Also note that the run starting low in the plume makes three loops,
when it moves down-gradient. This is less likely to happen when it starts
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Figure 10: Algorithm based on evolved behavior of robot in low turbulence
scenario.

Finally, in order to verify that the above analysis captures the necessary
components of a successful odor localization strategy, a hand-coded version of
the strategy was made. Figure 10 shows a finite-state machine representation
of the strategy. An additional advantage of developing such a representation
of the behavior is that it allows other researchers to reproduce the strategy.
The robot moves across wind until it encounters the odor plume, at which
point it begins to exhibit a behavior that allows it to follow an isoline. If
the robot is moving up gradient it will steer to the right, and if it is moving
down gradient it will steer more severely to the left. By steering harder to the
left than the right the algorithm more accurately reproduces the spiralling
behavior of the evolved CTRNN. Additionally, if the robot begins to move
downwind it will steer to the left until it is facing upwind again. When tested
on R = 1000 runs, the percentage of the robot ending up within 6m is 95.3%,
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Figure 11: A typical run of the finite-state-machine based on the behavior
evolved for the low turbulence scenario.
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Figure 12: Left: Trajectory of the robot close to the odor source. Right:

The top, middle and bottom plots show the activations of the output neurons,
hidden neurons, and sensory inputs respectively. The plot of the output
neurons is complemented by a graph of the robot’s turn rate, ω.

closely matching the performance of the evolved CTRNN. An example run
of the algorithm is shown in Figure 11.

3.3 Source Identification

When the robot gets close to the source, it slows down. Although it cannot
be seen in a plot showing the entire environment, the robot starts circling
downward extremely slowly. This behavior can in principle be detected au-
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tomatically and used for source identification. However, the robot also ex-
plicitly identifies the source with its fourth output neuron, o4. The average
mutual information between o4 and the presence within the circle, Q, has
been determined as 0.731 (see Table 1).

Figure 13: Histograms of the identification output’s activations within 6m
of the source (dark) and at larger distances (transparent white), for a single
run.

In order to understand what a mutual information value entails, Figure
13 shows the histogram of o4 outside of the circle (white transparent) and
inside of the circle (dark), for a run in which the robot obtains a mutual
information value of 0.76. It is clear from the figure that o4 is low close to
the source and high far from the source.

The few high outputs close to the source are due to the initial part of
the trajectory in the 6m circle. To illustrate this, the final part of the run
and the corresponding neural activations are shown. The left part of Figure
12 contains the part of the run in which the robot gets close to the source
(t ≈ 450s), follows the isoline around it (t ∈ [480, 500]), spirals in toward the
source with two loops (t ∈ [500, 550]) and finally almost comes to a stop just
downwind of the source t > 550s. The right part of Figure 12 is a plot of the
involved neural activations of the output neurons (top, complemented with
a graph of ω), the hidden neurons (center), and the sensory inputs (bottom).

While the robot is following the isoline and not really close to the source
yet (t ∈ [450, 500]), the identification output o4 still has a high activity.
Looking at the neural activations, one can notice that s2 is still low ∼ −1.0,
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as is the base activitation of s1. They both increase around t = 537, while
o4 decreases. To verify whether the higher activities of s1 and s2 cause
stable source identification, the following test has been devised. The goal of
the test is to influence the identification output, while keeping the robot’s
behavior identical to before. To this end, at each time step first the neural
network was run on the normal sensory inputs. Then, a copy of the network
was also run, but now with some of the sensory inputs replaced, and the
identification output was calculated. In this way, in the copied network
the hidden neurons activations and the identification output accumulate the
maninpulated sensor information over time, without influencing the robot’s
behavior. Two variants of the tests are performed: (1) a test in which s1 is set
to −1.0 if it is lower than 1.5 (the rationale being that this leaves intact the
detection of a concentration increase but does influence the baseline activity),
and (2) a test in which s2 is set to −1.0. Both tests lead to high identification
activation values, o4 ≈ 1.0. In terms of performance, while in the normal
run a mutual information of 0.76 was obtained, in both tests the mutual
information drops to 0.00. This means that both neural inputs s1 and s2
need to be coherent with sensor readings close to the source. Furthermore,
replacing the sensory inputs only in a given time interval showed that any
replacement longer than 2.5s leads to high o4 activation values.

4 High turbulence scenarios

As mentioned before, the experiments on the high turbulence scenarios have
been performed with a concentration threshold Cthr = 20. Figure 14 shows
the effects of this threshold on the area of the plume that can be sensed by
the robot: black pixels indicate concentrations above the threshold, white
pixels concentrations below the threshold. On average, the robot can sense
the odor in 1.99% of the simulation environment.

4.1 Results

For the high turbulence scenarios, the six evolutionary runs resulted in differ-
ent amounts of success on the odor source localization task. Table 2 shows
the performances of the best individuals on the fourth test scenario, with
R = 1000. The table shows the average fitness C, the average distance to
the source at the end of the run dt=T , the proportion of times that the robot is
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Figure 14: Effect of a concentration threshold Cthr = 20. Black pixels indi-
cate concentrations above the threshold, white pixels indicate concentrations
below the threshold.

Table 2: Performance on the high-turbulence scenario.

C dt=T P (dt=T ≤ 6m) I(O4;Q)/H(Q)

1 −137(±103) 7.85(±17.3) 0.843 0.439(±0.268)
2 −69.0(±66.1) 10.1(±19.5) 0.774 0.0(±0.0)
3 −35.8(±62.3) 12.3(±19.1) 0.706 0.057(±0.079)
4 −1.31(±60.0) 15.6(±20.4) 0.407 0.016(±0.030)
5 −30.8(±64.6) 13.4(±22.8) 0.746 0.05(±0.073)
6 −71.5(±124) 22.0(±29.4) 0.523 0.308(±0.333)

close to the source (≤ 6m) at the end of the run P (dt=T ≤ 6m), and the nor-
malized average mutual information I(O4;Q)/H(Q). All evolutionary runs
lead to successful plume search and good plume following. However, only
two out of six runs result in good odor source identification (evolutionary
run 1 and 6).

The best result is obtained by evolution number 1, with an average per-
formance of C = −137. This individual, referred to as robot 1, also scores
best on all sub-criteria shown in Table 2. On average the individual ends up
at d = 7.85m from the source, while being closer than 6m to it in 84.3% of
the cases. Furthermore, it has the highest average I(O4;Q) = 0.439.

Figure 15 shows a typical run of robot 1. The robot starts the run at
a location under the plume. It then starts searching obliquely cross-wind
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toward the bottom left, at a relatively high speed. It leaves the simulation
area on the bottom, and reappears at a random (more distant) location on the
top. At t = 400s, the robot senses a puff of the odor plume and subsequently
starts moving (more slowly) upwind to the source. Arrived at the source,
the robot first makes a loop around it. Slightly downwind of the source, at
t = 1024s, the robot starts to move so slowly that it almost stops. The robot
identifies the source with a low activation of the identification output (black
circle markers).
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Figure 15: Typical run of the best evolved individual on the high turbulence
scenario.

The generalization of robot 1’s strategy to other locations than the ones
used in evolution is tested in the same manner as for the low-turbulent case.
The results are shown in Figure 16. The images are similar to those generated
for the low turbulence scenario. However, below the plume is a region of dark
‘noise’ in the figures located in the left and in the bottom of the figure. Due
to the search direction and the location of the plume, these areas lead to the
robot not sensing the plume, leaving the simulated area and reappearing at a
random location on the right or top, respectively. With a bit of bad luck, the
robot misses the plume again, and finally either does not sense any plume at
all, or arrives too late at a plume. This also explains why the utter bottom
is bright / white again: starting at such a place effectively means that the
robot is closer to a plume in its search direction.
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The bottom images of Figure 16 show the performance of the robot start-
ing from every location if there is only one plume in an infinite world. Again,
the performance is similar to that of the robot in the low turbulence scenario
in that it is successful from all locations within or near to the plume and from
an area above the plume. However, the white areas cover a greater portion
of the world above the plume than in the low turbulence scenario because
the robot evolved under turbulent conditions has a more crosswind search
strategy, allowing it to locate the plume from more starting positions.
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Figure 16: Left: Distances to the source at t = T are shown at all initial
positions of a 80×80 grid in the environment. The final distances range from
0 (white) to 52 (black). Right: whether the robot ends up at the source
(white), does not end up at the source but passes close to it at some point
of its trajectory (gray), or does not pass close to the source (black).

4.2 Analysis

In this section, the odor source localization strategies are analyzed of robots
evolved on the high turbulence scenarios. The six different evolutions all
resulted in similar strategies, and therefore the analysis focuses on the best
performing solution, robot 1. The analysis is again subdivided in the three
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sub-tasks of odor source localization: plume search, plume following, and
source identification.

4.2.1 Plume Search

The same test as for the low-turbulence scenario is performed to find the
angles to the wind that the robot follows when there is no odor concentration.
The mean direction is −59.0◦(±15.7). Again, the robot follows a rather fixed
heading with the wind when searching for a plume. It always moves obliquely
cross-wind, but oscillates more from left to right than in the diffuse scenario.
This is the reason for the larger spread in directions. The oscillating behavior
can be seen in Figure 15.

4.2.2 Plume Following

When the robot has found the plume, it starts moving toward the source.
Although it is well-known that under highly turbulent conditions, gradient
search is not a good strategy, it is interesting to repeat the analysis on the
gradient direction with respect to the robot’s heading. Figure 17 shows a his-
togram of the gradient direction over the entire run. As in the low-turbulent
scenario, the robot does not follow the concentration gradient. However, in
this case, the histogram is close to uniform. Although the negative gradient
directions are slightly more likely, the histogram suggests that the robot is
not keeping any fixed heading with respect to the concentration gradient.

Observation of the robot’s behavior leads to an alternative hypothesis.
When the robot senses the odor, it performs two loops that move up-wind
and end closely downwind of the position of the odor detection. If the robot
does not sense the odor after some time, it seems to start searching for the
plume again. Since there is a reasonable probability that the robot senses the
odor again while looping upwind or moving cross-wind, it has a reasonable
chance of making a new loop closer to the source. The closer the robot gets
to the source, the larger the probability of sensing the odor, and hence of
the robot making another loop toward the source. This behavior will finally
bring it to a position just down-wind of the source. At that location it will
make a full loop, since it will not detect any odor upwind of the source. In
addition, it is highly likely to sense the odor downwind of the source again,
resulting in a new loop around the source.

In order to investigate the behavior over time of the robot when it hits
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Figure 17: Robot heading with respect to the concentration gradient. If the
robot followed the concentration gradient, it would have a relative heading
of 0◦.
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Figure 18: Behavior of the robot when it encounters four (artificial) puffs at
different times, but all lasting 5s.

puffs of odor, the robot is placed in the environment without the odor plume
and first run normally for t = 200s. Then, in the time interval t = [200, 205]s,
the odor concentration measurement is artificially set to a concentration
c = 30, i.e., above the detection threshold of 20. This is repeated for
t ∈ [350, 355]s, t ∈ [380, 385]s, and t ∈ [456, 461]s. Figure 18 shows the
behavior of the robot when it hits the artificial puffs of c = 30. The trajec-
tory is represented with a solid line, while the onset of each puff is indicated
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with a diamond. When hitting the first puff, the robot first steers slightly
to its left (ω = 0.50 rad). Then it makes two loops. After t = 325s, the
normal search behavior is resumed. The angular velocity of the robot during
the loops smoothly goes from −0.22 at the onset of the first loop to 0 when
exiting the second loop. The 5s-long detection of a puff has an influence on
the behavior for 125s. This could be due to the neural network dynamics
being triggered by the peak of s1 =

c−cf
cf

. However, it turns out that this

peak only causes a brief ‘noise’ on the turning rate and velocity: artificially
setting the sensory input cf to zero completely removes the circling behavior
of the robot, but leaves intact the initial steering to the left (dashed line in
the figure). Please note that cf influences both s1 and s2. It is sensory input
s1 that causes the looping: leaving cf intact, but clamping s2 to zero has a
negligeable effect on the looping behavior.

Three aspects of the loop setup are particularly important. First, if the
robot hits a puff on the upper side of its circle, the new circle should be
located higher than the previous one. If this were not the case, the robot
would move downwards through the plume and likely exit it from the bottom
before arriving at the source. One can see the robot moving up in Figure 18,
after the third and fourth puff.

Second, hitting the puff close to the original detection location should
lead to a new, almost identical loop. The reader can notice in Figure 18 that
for the single puff detection, the detection location is enclosed by the second
loop (the location of the fourth puff is even enclosed by both loops). Because
of this setup, the robot will keep on circling around the source, if it will hit
a puff once every two loops.

Third, not all puff reactions are equal. For example, when the robot
receives a new artificial puff while still circling (see bottom part of Figure
18), the shape of the robot’s trajectory is not equal to that of the first puff:
one can see that after the fourth puff, the robot moves less strongly to its
left (in fact it steers to the left for a shorter duration and subsequently steers
stronger to the right). The different responses are caused by the different
inputs and network state at subsequent detections (at the fourth puff, the
robot is going downwind). Also the strength and duration of the puff have
an influence on the resulting behavior.

To illustrate the second and third aspect of the loop setup, another test
is performed with artificial puffs. This time, when the robot receives the
first puff at t = 200, an ‘artificial source’ is placed at the same y-coordinate,
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but 4.5m downwind of the robot, i.e., (xs, ys) = (x− 4.5, y). Every time the
robot passes in a band y ∈ [ys − 0.3, ys + 0.3] and downwind of the source
x > xs, the robot receives a new puff of 5s duration. Figure 19 shows the
resulting behavior for a ‘weak’ puff (c = 30, left part of the figure) and a
strong puff (c = 75, right part of the figure). The trajectories are especially
interesting, because they show that the robot exploits two different ways of
staying close to the source. First, it exploits the source’s emission frequency.
The frequency should be high enough so that the robot always encounters
the plume at least once during its two loops (of which at least one passes
behind the initial detection location). Second, it makes use of the higher odor
concentration levels just downwind of the source: this makes the robot slow
down and hence experience strong odor puffs more frequently. These two
ways add robustness to the behavior. For instance, if an odor source releases
less strong odor puffs, the robot will still circle around it if the emission
frequency is high enough.
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Figure 19: Behavior of the robot when an artificial source is placed upwind
(grey circle marker). If the robot is downwind, it receives artificial puffs
lasting 5s. Left: Puffs have a concentration of c = 30. Right: Puffs have a
concentration of c = 75.

In order to test the validity of the hypothesis advanced in the analysis
above, a simplified, hand-coded version of the strategy has been devised. It
can be represented as a finite state machine, which is shown in Figure 20. The
robot moves across wind until it encounters the odor. Upon encountering the
odor plume the robot will turn to head across wind in the opposite direction,
before moving in two clockwise circles. If during this time the plume is
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detected again the circular motion is restarted. If however the plume is not
detected during the circling behavior the robot will revert to searching across
wind. The hand-coded algorithm abstracts away from some of the aspects of
the CTRNN, but it captures the essential properties. After manually tuning
the parameters of the algorithm, it can indeed successfully perform the odor
source localization task. When tested on R = 1000 runs, the percentage of
the robot ending up within 6m is 69.9%. This is worse than the evolved
agent by 14.4%, but it shows that the algorithm covers at least the basic
principles behind the robot’s strategy.
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Figure 20: Algorithm based on evolved behavior of robot in high turbulence
scenario.

4.2.3 Source Identification

The average mutual information between o4 and the presence within the cir-
cle, Q, has been determined as 0.439 (see Table 2). This average is slightly
lower than in the low-turbulence scenario for two reasons. First, the aver-
age is influenced by the number of times that the robot reaches the source,
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Figure 21: A typical run of the algorithm based on the behavior evolved for
the high turbulence scenario.

as the mutual information is zero otherwise. In the high-turbulence sce-
nario, the probability of ending up at the source is 13.1% lower than in the
low-turbulence case. Second, the higher turbulence leads to a more difficult
identification problem, with the instantaneous concentration level being less
indicative of source proximity. To illustrate the source identification per-
formance, Figure 22 shows the histogram of o4 outside of the circle (white,
transparent) and inside of the circle (dark), for a run in which the robot finds
the source.

It is clear from the figure that o4 generally is low close to the source and
high far from the source. However, the robot’s output is also sometimes low
far away from the source (just after detecting a new odor puff) and high
close to the source (when it is upwind of the source for example). The left
part of Figure 23 shows the robot’s trajectory when it approaches the source
(t = 560s), loops around it (t ∈ [580, 700]), and finally almost comes to a stop
just downwind of the source t > 775s. The right part of Figure 23 is a plot
of the involved neural activations of the output neurons (top, complemented
with a graph of ω), the hidden neurons (center), and the sensory inputs
(bottom).

Looking at the sensory inputs and neural activations, one can see that o4
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Figure 22: Histograms of the identification output’s activations within 6m
of the source (dark) and at larger distances (transparent white), for a single
run.

has a lower activity when the robot has a high s1. This causes the few faulty
identifications far away from the source. However, encountering a single
odor puff does not always result in a low o4 and does not lead to continuous
source identification. This only happens when the robot gets really close to
the source. Odor puffs are sensed more frequently, and although this leads to
smaller peaks in s1’s activity (around 2 instead of 8), it does lead to a higher
baseline activity of both s1 and s2. To verify that the higher activities of s1
and s2 cause stable source identification, the same two tests as for the low
turbulent case are performed. While in the normal run a mutual information
of 0.46 was obtained, in both tests the mutual information dropped to 0.00.
This means that both neural inputs s1 and s2 need to be coherent with sensor
readings close to the source. Furthermore, replacing the sensory inputs only
in a given time interval showed that any replacement longer than 2.5s leads
to high o4 activation values.

With the same kind of test, a more remarkable observation was made.
When looking at the activations in Figure 23, one can see that s3 and s4,
the wind direction inputs, are much more variable before t = 700s than
after. When the robot circles, these inputs go up and down. When the
robot slows down close to the source, it moves straight down with the wind
coming from its right. The wind direction inputs s3 and s4 then are rather
constant. To investigate whether this also influences the source identification,
the activations of s3 and s4 were replaced after t = 700 with those 500s before.

33



5 10 15 20

35

40

45

XS t = 550

t = 600

t = 650

t = 700t = 750t = 800t = 850t = 900t = 950t = 1000t = 1050t = 1100t = 1150

550 600 650 700 750 800 850 900
−1.0

−0.5

0.0

0.5

1.0

o
u
tp

u
ts

o1
o2
o3
o4
turn rate

550 600 650 700 750 800 850 900
−1.0

−0.5

0.0

0.5

1.0

h
id

d
e
n
s

550 600 650 700 750 800 850 900
−2

0

2

4

6

8

10

in
p
u
ts

s1
s2
s3
s4

Figure 23: Left: Trajectory of the robot when it approaches the source
(t = 560s), loops around it (t ∈ [580, 700]), and finally almost comes to a
stop just downwind of the source t > 775s. Right: Naural activations in the
same time interval. The top, middle and bottom plots show the activations
of the output neurons, hidden neurons, and sensory inputs respectively. The
plot of the output neurons is complemented by a graph of the robot’s turn
rate, ω.

This led to a significant increase in identification activation, with o4 ranging
in between −0.5 (as in the normal run) and 0.5 (higher than in the normal
run). The mutual information more than halved to 0.19. In the case of the
wind direction inputs, already a sensory replacement lasting 1s has an effect
on o4.

The finding that the wind sensors influence source identification is inter-
esting, because it implies that the robot does not only use environmental cues
to identify the source, but also the properties of its own behavior. Namely, in
general there is no correlation between wind direction and proximity to the
source. However, given the behavior of the robot there is such a correlation.

5 Conclusions

The main conclusion is that the ER approach can be successfully employed
to solve the odor source localization task under turbulent conditions. The
evolved strategies are both robust and computationally efficient. Moreover,
both the evolution under low-turbulent conditions and the one under high-
turbulent conditions resulted in novel odor source localization strategies, us-
ing only one chemical sensor and one wind direction sensor. The analysis
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revealed the underlying characteristics of the strategies.
The robot evolved for the low turbulent scenarios approximately follows

an isoline of the concentration gradient until it starts to move downwind when
passing the source. Having the wind in the back makes the robot spiral in
toward the source. This strategy exploits the fact that in the low-turbulence
scenario, diffusion plays a considerable role in the cross-wind direction. While
the concentration in the center of the plume has a high variance because of
the passing odor puffs, the border of the plume has a rather low variance.
This implies that the lower concentration isolines generally lead toward the
source without interruption.

The robot evolved for the high turbulent scenarios makes two upwind
loops upon the detection of an odor puff. The loops pass close to (and
behind) of the original detection location. As a consequence, the robot will
keep looping around the source. This strategy exploits the spatial probability
distribution for sensing an odor puff, and in particular the fact that this
probability is practically zero up-wind of the source, while it is considerable
just downwind of the source.

The strategies as revealed by the analysis have been validated by means
of hand-coded finite-state-machines. Finally, in both scenarios, source iden-
tification is performed on the basis of the frequency of odor puffs and the
higher odor concentration. In the high-turbulence scenarios, the wind di-
rection also aids identification. Although the wind direction in itself does
not carry any information on source proximity, it does given the behavior of
the robot: close to the source the robot starts moving downward extremely
slowly, while far from the source it goes downward more rarely.
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