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Abstract

Microscopic analysis is a standard approach in the study of robot behaviour. Typ-

ically, the approach comprises the analysis of a single (or sometimes a few) robot-

environment system(s) to reveal specific properties of robot behaviour. In contrast to

microscopic analysis, macroscopic analysis focuses on averaged properties of systems.

The advantage is that such a property is easier to generalise so that it can be estab-

lished to what extent the property is universal. This paper investigates whether a

macroscopic analysis can reveal a universal property of adaptive behaviour in a robot

model of foraging behaviour. Our analysis reveals that the step lengths of the most suc-

cessful robots are distributed according to a Lévy-flight distribution. From studies on

a variety of natural species, it is known that such a distribution constitutes a universal

property of foraging behaviour. Thereafter we discuss an example of how macroscopic

analysis can be applied to existing research in evolutionary robotics, and relate the

macroscopic and microscopic analyses of foraging behaviour to the framework of sci-

entific research described by Cohen (1995). We conclude that macroscopic analysis

may predict universal properties of adaptive behaviour and that it may complement

microscopic analysis in the study of adaptive behaviour.
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1 Introduction

In order to understand adaptive behaviour, Beer (2003) suggested that one should start by

investigating minimal models, as is a common approach in physics. In recent years, in-depth

analysis of such models revealed many new insights into the processes underlying cognition

(see, e.g. Beer, 1995, 2000, 2003, Nolfi, 1998, 2002, Slocum, Downey, and Beer, 2000, van

Dartel, Sprinkhuizen-Kuyper, Postma, and van den Herik, in press, de Croon, Nolfi, and

Postma, in press). So far, analysis of single robots has been performed at a microscopic

level, in which the focus is on the successful behaviour of individual robots. Although such

microscopic analyses have led to explanatory insights and testable predictions for individual

robots in specific environments, the insights and predictions are difficult to generalise (Guillot

and Meyer, 2001). For example, in a study by Nolfi (2002), a microscopic analysis of the

sensorimotor behaviour of a few successful robots on a self-localisation task revealed that

success on that specific task depended on the ability to integrate information over different

time scales. Moreover, microscopic analyses reveal properties of robot behaviour on various

tasks. At the same time the microscopic approach raises questions about the generality

of the properties revealed. In the case of Nolfi’s study, it remains to be established how

general the strategy of integrating information over different time scales is in relation to

self-localisation. We believe that for adequate handling of such issues of generality another

approach is needed.

In this paper we demonstrate that macroscopic analysis might be such an approach.

Applied to robotics, macroscopic analysis analyses the average properties of many robots in

similar environments. So far, macroscopic analysis has only been applied to robotics in the

context of multi-robot systems (see, e.g. Lerman, Galstyan, Martinoli, and Ijspeert, 2001,

Lerman and Galstyan, 2003, Jones and Mataric, 2003). In order to improve the generality

of findings in single-robot systems, macroscopic analysis has to be conducted over many
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instances of the same robot on the same task.

For two reasons, macroscopic analysis might be adequate to handle issues of generality

in evolutionary robotics. The first reason is that macroscopic analysis ignores individual

differences by analysing the average properties of many robots in similar environments.

Therefore, macroscopic analysis may be more suitable to reveal universal properties, i.e.

properties characteristic for a class of robot-environment systems. The second reason is that

the application of macroscopic analysis in statistical physics has revealed many universal

properties; for instance on DNA sequences, heartbeat rates, and weather variations (Havlin

et al., 1999, Stanley et al., 2001, Beekman, Sumpter, and Ratnieks, 2001).

In summary, we propose that macroscopic analysis of single-robot systems might improve

the generalisability of contemporary research in robotics. To evaluate the effectiveness of

macroscopic analysis in the context of single robot systems we formulated a straightforward

research question: Can macroscopic analysis reveal a universal property of adaptive behaviour

in a robot model?

To answer this research question we employ the methodology of evolutionary robotics

(Nolfi and Floreano, 2000: 18), because “the possibility of evolving robots that are free to

select their way to solve a task by interacting with their environment may help us to under-

stand how natural organisms produce adaptive behaviour”. In our research, we will optimise

foraging behaviour of neural-network-controlled robots using an evolutionary-computation

algorithm. Then, we will perform a macroscopic analysis on the foraging behaviour of the

optimised robots. We expect that, by averaging over many behavioural interactions, macro-

scopic analysis will reveal properties that would remain obscured when only microscopic

analysis was applied. Hence, we investigate whether macroscopic analysis will predict a

universal property of foraging behaviour that can be confirmed by microscopic analysis. Ad-

ditionally, we will perform a microscopic analysis to examine whether a property revealed

by the macroscopic analysis can be recognised in the microscopic behaviour of the robots.
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The outline of the remainder of the paper is as follows. In section 2, the foraging ex-

periment is described. Section 3 presents the experiments and the results. In section 4 a

macroscopic analysis of the robot’s foraging behaviour is conducted and a provisional con-

clusion is provided. Section 5 contains the microscopic analysis and gives another provisional

conclusion. In section 6, the macroscopic and microscopic analyses are discussed. Finally,

our conclusions are presented in section 7.

2 The foraging experiment

The foraging experiment is described in terms of the environment (subsection 2.1) and the

robot (subsection 2.2).

2.1 The environment

The environment is defined as an L×L square lattice with periodic boundary conditions (i.e.

the environment is defined on a torus) containing n food elements. Randomly distributed

dots over the L2 locations represent the food elements. A robot will collect food by walk-

ing over the food elements. Whenever a food element is collected, it is removed from the

environment and replaced by a new one at a random location. In this way, the number of

food elements remains constant throughout the experiment. Figure 1 is an illustration of

the environment with randomly distributed food elements (dots), and in the environment a

robot (circle).

Insert figure 1 about here.
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2.2 The robot

The robot performing the foraging task is controlled by a neural network and is defined in

terms of a sensor mechanism (subsection 2.2.1) and a brain (subsection 2.2.2). The fitness

function F of the evolutionary-computation algorithm is given in subsection 2.2.3.

2.2.1 Sensor mechanism

The sensor mechanism of the robot contains a sensor and an internal Gaussian noise source.

The sensor detects the nearest food element within its circular field of view with radius r.

It only processes the nearest food element within the field of view; the sensor is orientation

sensitive. Defining the orientation of the robot by α and the orientation of the nearest

food element by β, the sensor activation I (i.e. the input) is given by the normalised one-

dimensional Von Mises basis function (Gutowski, 2001).

I =
ekcos(α−β)

ek
(1)

where k is a positive constant proportional to the width of the basis function. The Von Mises

basis function is the spherical analogue of the Gaussian basis function. The normalisation

constant ek ensures that the maximal value of the right-hand side term equals 1 when α =

β.

The internal Gaussian noise source (zero mean, standard deviation sd) is to be considered

as a second input: it models the intrinsic noise of neural systems (cf. Zippelius and Engel,

2003). A food element is collected when the distance between the food element and the

robot equals 0.1r.
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2.2.2 Brain

The brain (or controller) of the robot is a recurrent neural network with two input neurons

(a food-detecting input and a noise source), H hidden neurons, and two output neurons.

The input neurons are connected to the hidden neurons and to the output neurons. The

hidden neurons have neural inertia by means of self-connections (Nolfi, 2002). This means

that the activity of the hidden neurons can be sustained for an extended period of time.

The decay in activation is inversely proportional to the weight on the self-connection of the

neuron. The initial network configuration is shown in figure 2.

Insert figure 2 about here.

Each connection can be switched on or off during the evolutionary process, while retaining

its weight value (cf. Spronck, Sprinkhuizen-Kuyper, and Postma, 2001). Initially, all weights

are assigned random values symmetrically distributed around zero on the interval [−rw,rw],

with rw > 0. The transfer function for the hidden neurons is the sigmoid tanh function

that maps onto the interval 〈−1, 1〉. The two output neurons control the robot’s relative

direction and step size, respectively. The output of the direction neuron is multiplied by π.

A modulo operation restricts the direction to the interval 〈−π, π〉. The transfer function of

the step-size output neuron is a semi-linear function l = f(u) that maps negative values to

zero and positive values u to the interval 〈0, uL/2〉, with L = 10 000.

2.2.3 Evolutionary-computation algorithm

The real-valued weights of the neural network controlling the robot are optimised for foraging

efficiency using the standard evolutionary-computation techniques of reproduction, crossover,

and mutation (Goldberg, 1986, Spronck et al., 2001). The algorithm uses a fitness function
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F , which is defined as follows.

F =
1

T

( T
∑

t=1

c(t)− λ
T
∑

t=1

l(t)
)

(2)

where t is an index for individual simulation steps (t = 1, 2, . . . , T ) with T denoting the total

number of steps, c(t) is a function that returns 1 if a food element is collected at step t and 0

otherwise, l(t) = f(u, t) is the step length of the robot at step t as defined in subsection 2.2.2.

The first term between the brackets favours food collection. The second term punishes long

steps. The strength of the second term is set by λ.

3 Experiments and results

A large series of experiments was performed to optimise the foraging behaviour of robots.

The goal of the experiments was to collect sufficient data of efficient foraging behaviour

as required for macroscopic analysis. The experiments are described in subsection 3.1. In

subsection 3.2, the resulting foraging behaviour is described.

3.1 Experiments

The foraging behaviour of 1000 robots was optimised. The optimal behaviour of each robot

was the result of applying the evolutionary-computation algorithm over 1000 generations

with a population size of 1000 robots. All experiments were performed with the following

parameter values: H (the number of hidden units) = 2, r (the radius of the circular field of

view) = 1, L (the width and heigth of the environment) = 10 000, n (the number of food

elements) = 100, rw (the parameter that defines the range in which weights are assigned

values) = 0.5, k (the positive constant that is proportional to the width of the basis function)

= 20, sd (the standard deviation of the Gaussian noise source) = 0.5, T (the total number
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of steps) = 10 000, and λ (the parameter that determines the impact of punishment for long

steps) = 0.00001.

3.2 Results

The experiments yielded a population of 1000 optimised foragers, with −0.0045 ≤ F ≤

0.0065. After observing the behaviour of the optimised robots, we distinguished three types

of foraging behaviour: (1) systematic behaviour (e.g. foraging in straight lines or circles), (2)

random-walk behaviour, and (3) Lévy-flight behaviour. Systematic strategies were employed

by 719 of the optimised robots, and considered sub-optimal because these strategies were

employed by the optimised agents with the lowest fitness (F < 0.0). These 719 robots

were left out of all further analyses. The other 281 optimised robots either employed the

random-walk strategy shown in figure 3(a) or exhibited the Lévy-flight strategy shown in

figure 3(b).

Insert figure 3 about here.

Insert figure 4 about here.

Although most of these 281 fittest optimised robots exhibited the random-walk behaviour,

the best ones exhibited Lévy-flight behaviour.

A characteristic feature of the fittest robots (see figure 3(b)) is that their local random-

walk behaviour is occasionally interrupted by large jumps. As a result, the area covered by

these robots is much larger than the area covered by robots that only exhibit the random-

walk behaviour (hence, there is a large difference between the depicted ranges of the x-axis

and the y-axis in figures 3(a) and 3(b)). The sudden jumps are known as Lévy flights

(Gutowski, 2001, Viswanathan et al., 1999, 2001). Foragers adopting a Lévy-flight strategy
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outperform the robots adopting a random-walk strategy in terms of foraging efficiency. The

advantage of Lévy flights is that the probability of returning to a previously-visited site is

smaller than it is for pure random-walk behaviour (Shlesinger and Klafter, 1985).

4 A macroscopic analysis

Inspired by the success of macroscopic analysis in statistical physics, we conducted a macro-

scopic analysis on the efficient foraging behaviour of the optimised robots. In our context,

macroscopic analysis involves the following three main steps: (1) the collection of a very

large number of instantiations of the system or behaviour under study, (2) summarising the

data in terms of a distribution or descriptors thereof, and (3) the identification of a property

that is characteristic for (the behaviour of the) system. Our macroscopic analysis focuses

on the quantification of the difference between random walks and Lévy flights in terms of a

single parameter µ. The first step of the macroscopic analysis consists of the measurement

of step lengths for a very large number of foraging robots. Then, in the second step we sum-

marise the data so obtained by a descriptor (µ) of the shape of the step-length distribution

(Viswanathan et al., 1999). Finally, in the third step, we identify the value of µ to be char-

acteristic for the foraging behaviour of the robots. Concentrating on the probability of large

step lengths, the tail of the step-length distribution scales according to (cf. Viswanathan et

al., 2001):

P (l) =
l−µ

Z
(3)

with P (l) representing the probability of a step of length l, and Z a normalising constant.

The parameter µ is proportional to the slope of the tail of the step-length distribution. In

particular for a Gaussian function that generates random-walk behaviour, the parameter µ

is larger than 3.0. Lévy-flight behaviour is associated with 1.0 < µ ≤ 3.0. These values of

µ yield ‘fatter’ tails. In our robot, the step-length distribution is generated from the step
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lengths produced by the output neuron.

To perform our macroscopic analysis we created step-length histograms of the foraging

behaviour of optimised robots exhibiting both the random-walk and Lévy-flight behaviours.

Figure 4 shows an example of such a step-length histogram.

Insert figure 5 about here.

Subsequently, we analysed the tails of the log-transformed histograms by fitting a linear

regression line through the data points. The slope of the line is an estimate of the value

of µ that underlies the behaviour of both the random-walk behaviour and the Lévy-flight

behaviour of robots. Figure 5 displays the regression line for a robot that exhibits the

Lévy-flight behaviour shown in figure 3(b).

Insert figure 6 about here.

The slope of the regression line of the log data is approximately equal to −2 (i.e. µ ≈ 2).

In terms of equation 3 this corresponds to P (l) = l−2/Z.

For each of the 281 fittest foragers a histogram (such as shown in figure 4) was created

from several runs of T steps each. Subsequently, the value of µ was determined for each

histogram. Figure 6 plots the fitness of the 281 fittest foragers as a function of µ. The values

of µ ranged from µ ≈ 2.0 to µ ≈ 4.3. Figure 6 shows an increase of fitness for agents with a

distribution of step lengths that can be characterised by a value of µ that is closer to 2. In

other words, the best performing foragers, viz. those employing a Lévy-flight strategy, can

be associated with µ ≈ 2.0. A range of animals exhibits efficient foraging behaviour that

is characterised by Lévy flights with µ ≈ 2.0: albatrosses, foraging bumblebees, deer, and

amoebas (Viswanathan et al., 1999, 2001).
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Insert figure 7 about here.

We provisionally conclude that the macroscopic analysis revealed a property, viz. Lévy-

flight behaviour as characterised by µ ≈ 2.0, that is universal to optimal foraging behaviour.

5 A microscopic analysis

In addition to the macroscopic analysis, we performed a microscopic analysis to investigate

whether the property revealed by the macroscopic analysis can be recognised in the micro-

scopic behaviour of the robots. Our microscopic analysis focused on a successful foraging

robot, i.e. a robot that exhibits Lévy-flight behaviour. The analysis aimed at explaining

the mechanism that generates the efficient foraging behaviour by inspecting the optimised

weights of a successful robot. An interesting example of such a robot is shown in figure 7:

the food-detecting sensor of this robot is disconnected.

Insert figure 8 about here.

As can be seen in the figure, the internal noise fully determines the behaviour of the

robot. Our analysis of the functioning of this particular robot revealed the following mecha-

nism to underlie the Lévy-flight behaviour. The noise source excites the left hidden neuron

randomly. Whenever the excitation exceeds the threshold value of the neuron, it is activated

and generates a large step (i.e. a flight). At the same time, its activation excites the right

hidden neuron that, in turn, inhibits the left neuron. The neural inertia of the right neuron

sustains the inhibition for an extended period. As a result, the large steps occur infrequently,

as required for the efficient Lévi-flight strategy. The neural inertia realises a memory that

acts as a counting mechanism. Next to this extreme example there were other examples
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(some with connected food-detecting sensors) of efficient foraging robots.

We provisionally conclude that the microscopic analysis can explain the universal prop-

erty revealed by macroscopic analysis at a microscopic level. It is important to note that,

without macroscopic analysis, microscopic analysis could have revealed Lévy-flight behaviour

to be characteristic for optimal foraging, but could not have revealed the exact relation be-

tween foraging success and the property µ, and, hence, could not have revealed the universal

property of optimal foraging behaviour µ ≈ 2.0.

6 Discussion

Below, we discuss the macroscopic and microscopic analyses. In section 6.1, we provide an

example of how macroscopic analysis can be applied to complement microscopic analysis in

existing research in evolutionary robotics. In section 6.2, we discuss our macroscopic and

microscopic analyses of foraging behaviour in relation to the framework of scientific research

as described by Cohen (1995).

6.1 Applying macroscopic analysis

To illustrate how macroscopic analysis might generalise findings from existing studies in

evolutionary robotics, we adopt the results of a study performed by Nolfi (2002). First, we

briefly discuss the study and its findings. Then, we explain how macroscopic analysis can

be applied to generalise those findings.

Nolfi (2002) performed a microscopic analysis on agents that had to accomplish a task of

self-localisation while driving around in an environment. He investigated a neuro-controller

with neurons that change at different time rates. The changing rate, i.e. the neural inertia,

of individual neurons was optimised by an evolutionary algorithm. The experiments with the

self-localisation task resulted in agents with both fast changing neurons and slow changing
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neurons. While the fast changing neurons detected regularities occurring at short time scales,

the slow changing neurons detected regularities at longer time scales. The first finding of the

study is that the self-localisation task requires an agent to be capable of detecting regularities

on different time scales. The second finding is that the evolvable changing rates offer this

capability to the studied agent.

A macroscopic analysis might be a valuable tool to make both findings easier to generalise.

The first finding can be generalised by a macroscopic analysis that relates the self-localisation

task to the distribution of neural changing rates of successful agents. It suggests that suc-

cessful agents should possess both fast and slow changing neurons to be able to extract

regularities on short and long time scales. Hence, the above-mentioned distribution might

reveal a universal property of self-localisation, i.e. a property characteristic of the distribu-

tion of changing rates. To generalise the second finding, a similar macroscopic analysis can

be performed on robots performing another task that poses different requirements on the

detection of regularities in time. If another task only requires exploitation of regularities

on short time scales, then the second finding suggests that evolution will result in robots

with neurons that change fast. Hence, we expect the macroscopic analysis of such a task

to result in a distribution of changing rates that is different from that characteristic of the

self-localisation task.

In summary, the macroscopic analysis that we suggest might be able to reveal a universal

property of self-localisation.

6.2 Relation to the framework of scientific research

According to Cohen (1995: 4) the task of science is to provide theories to answer the following

three basic research questions. (1) How will a change in the agent’s structure affect their

behaviour given a task and an environment? (2) How will a change in an agent’s task affect

its behaviour in a particular environment? (3) How will a change in an agent’s environment
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affect its behaviour on a particular task?

In the context of our study, the agent corresponds to the robot (i.e. the structure con-

sists of the neuro-controller and sensor mechanism; the behaviour is defined by the relative

direction and step size provided by the two output neurons), the task is foraging, and the en-

vironment consists of randomly distributed food elements. The first basic research question

is addressed in our study by evolving the robot’s neuro-controller to enhance the foraging

behaviour. Both macroscopic and microscopic analyses answer this question, albeit in dif-

ferent ways. The macroscopic analysis answers this question by relating the distribution

of step-lengths produced by the robot’s neuro-controller to the foraging behaviour observed

(see section 4). The microscopic analysis answers this question by relating the structure of

the neuro-controller to the observed behaviour of the robot (see section 5). The second basic

research question is not addressed in our study because we do not vary the task of foraging.

Finally, the third basic research question is addressed by analysing the way in which a robot

copes with the change in distribution of food elements in the environment that results from

the robot’s own foraging. The macroscopic analysis can supply the answer to this question

on its own, whereas the microscopic analysis depends on the result from the macroscopic

analysis to answer it. The macroscopic analysis answers this question by revealing the uni-

versal property of µ ≈ 2.0 as the optimal way to cope with the changing distribution of food

elements (see section 4). The microscopic analysis cannot answer the third basic research

question on its own, because the analysis of a single (or sometimes a few) behaviour(s) can-

not detect a universal property that is revealed by the macroscopic analysis. The reason is

that the universal property is a characteristic of the average robot-environment interaction,

rather than a characteristic of a single (or a few) robot-environment interaction(s). Only

after the macroscopic analysis had revealed the answer to the third basic research ques-

tion (viz. Lévy flights as a characteristic of efficient foraging) the mechanism causing the

behaviour at a microscopic level (viz. the neural inertia of the analysed neuro-controller)

15



could be determined. So, macroscopic analysis enabled us to answer the third basic research

question. To perform the task of science, viz. provide theories to answer the three basic re-

search questions (Cohen, 1995), macroscopic analysis is preferred over microscopic analysis.

Figure 8 illustrates this by depicting the space of basic research questions.

Insert figure 9 about here.

Understanding progresses from descriptions, through prediction, towards causal expla-

nations. Many early microscopic analyses of robots comprise merely descriptions of robot

behaviour (see, e.g. Brooks, 1986, Steels, 1994). More recently, microscopic analyses have

become more focused on the underlying mechanisms (see, e.g. de Croon et al., in press).

Our contribution is to move from specific models towards more general models along the

generalisation axis (see figure 8) by employing macroscopic analysis. Evidently, additional

macroscopic analyses of robot behaviour are needed to arrive at more general models. As

in many other domains where macroscopic analysis has been successfully applied (Stanley

et al., 2001), it may lead to a conceptual framework for universality in complex behavioural

systems. Future investigations may reveal to what extent other insights in statistical physics

can be transferred to robotics.

7 Conclusions

Using macroscopic analysis, we revealed a universal property of foraging behaviour in evo-

lutionary optimised robots, viz. Lévy flights as characterised by µ ≈ 2. By doing so, we

have shown that macroscopic analysis of a robot model can reveal a universal property of

adaptive behaviour.

From the analyses and discussion we may draw the following three conclusions. (1) By

combining the two provisional conclusions that followed from our macroscopic and micro-
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scopic analyses of efficient foraging behaviour (see sections 4 and 5, respectively) we arrive

at the conclusion that macroscopic analysis may predict a universal property that can be

explained at the microscopic level by microscopic analysis. (2) From the discussion in subsec-

tion 6.1, on an example of macroscopic analysis applied to existing research in evolutionary

robotics, we conclude that macroscopic analysis may complement microscopic analysis in the

study of adaptive behaviour. (3) From the discussion in subsection 6.2, on how our macro-

scopic and microscopic analyses of foraging behaviour relate to the framework of scientific

research described by Cohen (1995), we conclude that macroscopic analysis may be preferred

over microscopic analysis, owing to its power to reveal universal properties.

Given these three conclusions, and the success of macroscopic analysis in statistical

physics and other disciplines (Stanley et al., 2001), we expect it to generate novel insights

into the universal properties of adaptive behaviour in robot models and natural systems,

which is crucial to the understanding of the interaction between a (robot) brain and its

environment.
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8 Figure Captions

Figure 1. Illustration of a robot (circle) in the experimental environment with randomly

distributed food elements (dots). The values on the x-axis and y-axis are spatial coordinates

(0 ≤ x, y < L = 10 000).

Figure 2. The initial network configuration of robots entering the evolutionary optimisation

process.

Figure 3. Two types of foraging behaviour.

Figure 4. Histogram of step lengths.

Figure 5. Log-log plot of the tail (l >> 0) of the histogram. The slope of the regression line

is ≈ -2.

Figure 6. The fitness F (see section 2.2.3) as a function of the step-size distribution pa-

rameter µ for the 281 fittest foragers obtained through evolutionary optimisation of foraging

behaviour.

Figure 7. An example of the network configuration of a successful foraging robot.

Figure 8. The two-dimensional space of versions of the basic research questions (Redrawn

from Cohen, 1995).
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(a) Illustration of random-walk foraging. The path consist of

10 000 steps. The values on the x-axis and y-axis are spatial

coordinates with 0 ≤ x, y < L = 10 000, of which only the

ranges 4950 ≤ x < 5050 and 4920 ≤ y < 5060 are depicted



 

(b) Illustration of Lévy-flight foraging. The path consists of

10 000 steps. The values on the x-axis and y-axis are spatial

coordinates with 0 ≤ x, y < L = 10 000, of which only the

ranges 4200 ≤ x < 5800 and 4400 ≤ y < 5800 are depicted
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