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Abstract

For autonomous robots to operate successfully in unknown envi-
ronments, their computer vision algorithms need to generalize over
many different environments. However, due to practical considera-
tions robotic vision experiments are typically limited to a single robot
and a few (laboratory) environments. We propose crowdsourcing as
a methodology for gathering large and varied robotic data sets. We
evaluate the methodology by performing the first crowdsourcing ex-
periment involving actual robots. In particular, we have made a space-
game called ‘Astro Drone’ for a toy quad rotor, the Parrot AR drone.
Nine months after the game’s release, there are 14, 628 downloads and
840 contributions, consisting of visual features and drone state es-
timates. Data mining shows the methodology’s potential, providing
insights such as the relation between the number of visual features
and obstacle distances.

1 Introduction

Vision is a key sense for achieving robot autonomy. Robotic vision research
has largely focused on distance estimation, since it is so crucial to basic
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autonomous navigation capabilities. Some well-understood visual distance
cues, such as stereo vision and optic flow, have a mathematical foundation in
projective geometry [9]. As long as there is sufficient visual texture so that
corresponding points between images can be found, these cues generalize to
any environment - hence their use on planetary landers and rovers such as
Curiosity [15, 12, 27]. Other visual distance cues, based on the appearances
of objects, require training [26, 20, 19]. In order to ensure generic results
with such data-driven cues, a large and varied robotic data set is necessary.
However, due to practical reasons even large robotic data sets typically only
involve a few robots, environments, and light conditions [11, 21, 13, 17, 1, 23].

One way to gather larger and more varied data sets is to create a ‘robot in-
ternet’, as proposed by the RoboEarth project [28, 24]. The idea behind this
project is that autonomous robots functioning in different places can gather
and exchange knowledge via a cloud robotics infrastructure. The robots are
envisaged to share maps or procedures for executing common tasks. This idea
may enable significantly accelerated progress in robot learning. However, no
tests have been performed yet with large numbers of robots. Indeed, major
obstacles include the number of autonomous robots currently functioning in
the real world, and how to arrange their connection to the developed robot
internet.

A different way to perform robotic data gathering is to employ crowd-
sourcing (cf. [2]). Existing crowdsourcing studies in the field of robotics
focus on data-mining human-human interactions in order to teach robots so-
cial skills [5], designing swarming nanoparticles for medical applications [10],
or investigating the way humans can best control swarms of robots [4]. Also
due to the limited availability of real robots [5], all of these studies involve
virtual worlds.

Instead, here we evaluate for the first time crowdsourcing as a method-
ology to gather large and varied data sets from real robots. The aim of the
methodology is to gather data from many robots operating in many different
environments. Specifically, we focus on a toy quad rotor named the Parrot
AR drone. The crowdsourcing methodology presented here is made possible
by the following unique combination of properties of the AR drone:

1. It has many sensors onboard. In particular, its frontal and bottom cam-
eras are of interest for robotic vision research. In addition, it can hover
autonomously, canceling drift with the help of optic flow as determined
by a downward pointing camera.

2. The enhanced autonomy properties make it possible to play augmented
reality games. A fun game can provide an effective incentive for people
to participate in the experiment.



3. Parrot has made the control library open source. This allows the cre-
ation of games by third parties.

4. Over 500,000 drones have been sold over the last three years, making
it a widely available robot [18].

5. The AR drone is piloted with a smart device such as an iPhone. Since
smart devices can connect to the internet, scientific data can be sent
to the experimenter.

We use the robotic crowdsourcing methodology to test a hypothesis on
distance estimation with Speeded-Up Robust Features (SURF) [3].

The remainder of the article is structured as follows. In Section 2, we
explain the robotic crowdsourcing methodology. Subsequently, we report on
the results in Section 3, discussing both the data gathered with the method-
ology and the results concerning our specific hypothesis. We conclude in
Section 4.

2 Methodology

The idea to perform robotic crowdsourcing is based on the Parrot AR drone’s
unique properties mentioned in the introduction. The crowd consists of peo-
ple owning a Parrot AR drone. This drone cannot only be used for flying,
but also for (1) making videos, and (2) playing Augmented Reality (AR)
games. The drone’s videos, combined with any available state information,
are of interest to robotics research on, e.g., obstacle detection. However,
asking drone owners to fly many times towards different obstacles does not
sound very rewarding. Instead, playing a fun AR game may be a sufficient
incentive for the crowd to participate in the experiment. A major challenge
is to align the setup of the game with the setup of the scientific experiment
to be performed.

In the remainder of this section, we will explain the robotic crowdsourcing
methodology, which is illustrated in the context of our specific experiment
in Figure 1. The details of the figure will become clear in the following
subsections.

2.1 The Experiment

The motivation for the experiment comes from the task of visual obstacle
detection. In order to detect obstacles, SURF features can be used [3]. The
image locations of such features are commonly tracked over time in order to



Figure 1: Methodology of robotic crowdsourcing, illustrated in the context of
our particular experiment. The game played with the AR drone is shown on
the top left, together with the computational processes running on the drone
and smart device during the game. During post-game processing (top-right),
SURF features are extracted from five images that were stored during the
game. If the player agrees, the features are combined with the drone’s state
estimates and sent to a database (bottom). The data can be analyzed with
respect to a specific hypothesis or with various data mining techniques. The
center bottom plot shows a Barnes-Hut-SNE clustering [14] of the feature
descriptors, colored according to the ‘response’ strength of the features.

perform visual odometry [16, 8] or Simultaneous Localization And Mapping
(SLAM) [6, 25, 29, 22]. Here our interest is in using simple statistics of SURF
features as an appearance cue for the distance to an obstacle. In particular,
our hypothesis is that the number of features in an image decreases with a
decreasing distance to an obstacle. There are two reasons underlying this
hypothesis. First, as a robot approaches an obstacle, fewer and fewer objects



are in view. Since features are often associated with parts of objects, we
expect the number of features to decrease. Second, the robot’s movements
induce motion blur. When moving at the same speed, there is more motion
blur when the robot is close to an object than when it is far away. Since
blur smoothens out the texture in the image, it also reduces the number of
features in the image.

Figure 2 shows the relation between the number of SURF features and
the distance to an obstacle, as gathered by the authors in TU Delft’s faculty
building of Aerospace Engineering. The robotic crowdsourcing experiment
serves to verify the hypothesis on a more varied data set.

Please note that the choice for SURF features allows different types of
post-experiment analysis. This analysis does not have to be limited to the
verification of this single hypothesis.

Figure 2: Number of features over time for 10 different image sequences made
with an AR drone 2 in a laboratory setting. All sequences start at 3m from
an obstacle and end close to the obstacle.

2.2 The Game

The main driver for the game concept is that it should align with the exper-
iment. In this case, the player should fly the drone toward an obstacle with
the camera facing forward. Since the main envisaged incentive for players is
to have fun, we had to think of a way to make this flight maneuver fun in
augmented reality. The nature of the European Space Agency provided an
ideal setting: there are many exciting space missions that can be coupled to
different flight maneuvers of interest to robotic experiments.



The concept chosen for the first level of our game was that of docking
to the International Space Station (ISS). This is a very delicate maneuver,
which requires swiftness and accuracy. A screenshot of the game can be seen
in the top left part of Figure 1. The relation between the real world and
augmented reality is made with the help of an orange-blue marker that is
provided with the Parrot AR drone.

In the game the marker represents the docking gate. As shown in the
top left of Figure 1, it is detected onboard the drone. The detections are
used by the state estimation onboard the smart device for rendering the
3D-space around the ISS. A detailed discussion of the 3D state estimation
of the drone (X, Y, Z) relative to the marker position (0, 0, 0) falls outside
the scope of this conference article. However, please note that this part is
crucial to the game’s success. For the game experience, not only accuracy is
of importance, but also responsiveness. This latter property was difficult to
obtain, with the state estimation data that is transmitted from the drone to
the smart device sometimes lagging behind the robot’s movements for almost
0.5s. The solution here was to incorporate control actions into the 3D state
estimation filter: if the player tilts the smart device to move the drone, the
simulated spacecraft already starts moving before receiving feedback from
the drone.

SURF features are not extracted during the flight. The reason for this is
that such an extraction on computationally limited smart devices would lead
to an extra computational burden and hence large delays in the gameplay.
Therefore, images are stored on the device. Since our interest is in the
statistics of SURF features while approaching an obstacle, images are only
stored during flight if the drone has sufficient forward velocity (≥ 0.15 m/s).
Five subsequent images are then stored on the smart device with a 0.25 s
interval. The time interval represents a trade-off between having sufficient
motion in between images and being able to track features over the images.
The stored images are accompanied by the drone’s state estimates at the
same times.

After playing the game, the player receives a score and can go to the
main menu of the game. In that main menu the player can choose to go to
the highscore table. If the player does so, a question pops up whether the
player wants to contribute to the crowdsourcing experiment. An explanation
is given of the experiment and data, with a link to the game’s web site. If
the player agrees to participate in the experiment, the score is added to the
highscore table. Simultaneously, the SURF features are extracted from the
images (top right in Figure 1). These features are combined with the state
estimates and meta-information. This data is then sent over the internet
to a database. The gathered data can subsequently be analyzed with data



mining techniques such as clustering or regression (bottom part of Figure 1).
Please note that players can play the (free) game without having to par-

ticipate in the experiment, keeping the participation completely optional.
Only if the player wants to figure in the highscore table, participation is
necessary.

Figure 3: Left: Download statistics. Number of downloaded apps (blue) and
uploaded samples (green) over time in weeks after the release of the game on
March 15, 2013. Right: Histogram of the number of features per image in
the gathered data set.

2.3 Market Analysis

In 2011, at the origin of this project, there were only iOS apps available for
the AR drone. Almost no information was available on the popularity of
these apps, since app download numbers are not publicly available in the



iTunes store. Although a thorough market analysis was out of reach, we
did notice that the number of augmented reality games for the drone was
rather limited. A possible reason for this was that Parrot did open up a
Standard Development Kit (SDK) for the drone’s ‘control library’, but not
the source code for the games that they made. As a result, most third-party
apps focused on new ways of controlling the drone or on games with very
few visual elements. No third-party app involved a 3D augmented reality.
We figured that creating a free augmented reality game for the drone would
hence be a nice addition to the games that can be played with the Parrot
AR drone. Because of the limited number of games, we assumed the game
would appear if someone searches for “AR drone” in the iTunes store.

Also, in 2011 it was difficult to estimate the number of drone owners
playing augmented reality games. Although the concrete number of 500, 000
sold drones was mentioned recently [18], it is not clear what portion of these
drones have been bought by research labs (less likely to play games) or indi-
viduals (more likely to play games), what portion of these drones are still in
one piece and still used, how many users look for new games when they do
use their drone, etc. The number of active drone users with an interest in
augmented reality games is likely much lower than 500, 000. Although this
makes the potential crowd much smaller than for other scientific crowdsourc-
ing studies not using real robots [5, 10, 4], we expected the crowd to be quite
interested by a new AR game.

2.4 Planning Game Release

The following steps were set up to prepare the game for release. First, we had
various colleagues and students play the game and then fill in a questionnaire
on the game experience. This survey provided valuable feedback, since naive
players play the game and operate the drone differently than the game’s
programmers. Second, we prepared all marketing materials. A video was
made by the European Space Agency, a news item for ESA’s central web site
was written, a press release was prepared, and some messages were prepared
for various forums. Third, we submitted the app to the iTunes store, selecting
the option to release the app into the store manually. After one iteration,
which required us to add some extra information on the connectivity with
the drone, the app was accepted and ready for release.



3 Results

The game, called “Astro Drone”, has been released by the European Space
Agency as a free app in the iTunes store1 on March 15, 2013. The game
release drew quite some attention, with news items appearing in online media
ranging from BBC Technology to “Die Zeit”, news papers such as the Dutch
“Metro”, and - very important for reaching our crowd - on social media such
as Parrot’s facebook page.

We determine the results based on two sources: (1) the information avail-
able from the ESA database containing the uploads of the players, and (2) the
information available in the iTunes store. The information sent to the ESA
database has been described in the previous section. The information from
the iTunes store consists of: the number of downloads over time, the number
of downloads per country, and the number of downloads per device. It is not
possible to see whether people downloading the app actually play the game.
We even expect some people without access to an AR drone to download the
game, despite the clear message on this in the game’s description.

The left plot in Figure 3 shows the number of app downloads over time
(blue line) and the number of ‘samples’ transmitted by participating players
(green line). A sample consists of the SURF features extracted from five
images with corresponding state estimates. Since its release the game has
been downloaded 14, 628 times in many countries such as the United States,
Turkey, and Russia, resulting in 840 contributions (on December 15, 2013).
The percentage of samples with respect to downloads is hence 5.74%. For
privacy reasons, we do not keep track of how many samples are contributed
by the different players. Therefore, we cannot relate the number of samples
exactly to the number of players / robots. However, given the current limited
extent of the game, we expect most players to make a single contribution, if
any. A few players may be quite enthusiastic and contribute a large number of
samples. This reasoning suggests that hundreds of robots have been involved
in the data gathering.

In this section, we first investigate the gathered data (Subsection 3.1)
and then verify whether the hypothesis on a decreasing number of features
is correct (Subsection 3.2).

3.1 Data Investigation

The 840 contributed samples together lead to a database of 226, 937 SURF
features. At http://www.bene-guido.eu/ the Astro Drone data set and

1For information on the game and a link to its place in the iTunes (and as of May 2014
Google Play) store, please visit the support site: http://www.astrodrone.org/



analysis scripts are available for inspection or use by other researchers.
In order to assess the quality of the data, we first look at the following

sample characteristics. Concerning the type of drone, 80.2% of the samples
was made with the AR drone 2 and 19.8% with the AR drone 1. The AR
drone 2 has a better camera quality and larger image size, which is likely to
influence the number and type of features extracted. Because in the exper-
iment we want to extract distance cues from visual features, it is important
to have a ground-truth distance to an obstacle in the environment. This
ground-truth is provided by the marker detection. For this reason we look at
the percentage of samples in which the marker is detected. Inspection of the
ESA database shows that the marker is detected in 52.0% of the samples.
Finally, the data is most interesting if players fly toward objects with some
visual texture, i.e., flying only toward white walls is not in the interest of the
experiment. Therefore, we look at the number of features per image. The
right plot in Figure 3 shows a pie chart of the number of features per image.
Although there is a considerable percentage of images with 0 - 25 features
(35.1%), there are also many images with many more features. Please re-
mark that since we limited the number of sent features per image to 125, the
interval of (100, 125] also represents all images with more than 125 features
(100,−) and amounts to 23.1%.

Figure 4: Trajectories for the 92 selected informative samples for AR drone 2.

3.2 Hypothesis Validation

In order to test whether the number of features correlates with the distance
to the obstacle on which the marker is placed, we first select a set of the most
informative data samples with respect to the ground-truth. The criteria for
a sample to be ‘informative’ are: (1) the marker is detected, (2) the drone



Figure 5: Relation between the number of features and distance to an obstacle
as determined with robotic crowdsourcing. Distance to the marker (x-axis)
versus the number of features (y-axis). In order to limit the amount of data
sent over the internet, the number of features was limited to 125.

moves sufficiently fast, i.e., more than 30cm over the five images, (3) the
drone moves toward a region of a meter around the marker position, and
(4) the drone does not end up behind the marker position. Applying these
criteria results in 110 samples that can be used for the current analysis. Since
most of these samples (92) have been made with the AR drone 2, we will
focus on that drone version in the analysis. Figure 4 shows the trajectories
for the selected samples.

Figure 5 shows the relation between the number of extracted SURF fea-
tures in the image and the distance to the marker. At smaller distances,
fewer features are detected in the image. When a least-squares linear fit of
distance versus the number of features is performed for each sample, 66%
of the estimated slopes is positive and 14% is equal to 0. The zero slopes
mostly occur due to the cut-off at 125 features.

The number of features does not provide a metric distance estimate. How-
ever, it can be a useful complement to other visual cues, since it does capture
situations in which accurate 3D-reconstruction or optic flow determination
can be difficult. In [7] a similar non-metric cue was shown to be a good
complement to optic flow for obstacle detection in an obstacle avoidance
task.



4 Conclusions

Our main conclusion is that robotic crowdsourcing is a viable methodology
for gathering large and varied robotic data sets. The 840 uploaded samples
contain 226, 937 gathered SURF features.

As a consequence of the methodology, the environments are not known to
nor controlled by the researcher. Therefore, it is more difficult to perform ex-
periments requiring a ground-truth. Still, we were able to test our hypothesis
that the number of features decreases with the obstacle distance. The infor-
mative samples from 92 different approach flights of the AR drone 2 show a
clear relationship between the number of extracted features and the distance
to an obstacle. This relationship can be used to ameliorate autonomous
obstacle avoidance, and shows the potential of robotic crowdsourcing for ex-
periments requiring a ground-truth. Moreover, the gathered data also allows
other types of analysis that do not rely on ground truth obstacle distance.
For instance, unsupervised feature clustering (see, e.g., the bottom part of
Figure 1) can use all 840 uploaded samples.

The creation and release of the Astro Drone app in total required around
18 person-months of work. Hence, one can wonder if the same number of
samples could not have been obtained with less effort by manually collecting
the data. However, the uniqueness of the data set does not lie in its size, but
in its variety: it has been collected by hundreds of different players controlling
different robots in different environments and (light) conditions.

Moreover, the effort to make this first release of the game is considerably
larger than the creation of additional levels, which can be used to answer new
research questions. For example, we intend to make a Mars landing level, in
which players have to land safely with a limited amount of fuel. The gath-
ered data will include visual features from the downward pointing camera
and sonar. Sonar is likely to provide a more reliable ground-truth measure-
ment than the (forward) marker detection used in the current experiment.
A different path to explore is a level in which we analyze the flight behavior
of experienced and less experienced players. The data may help in under-
standing human (learning of) piloting skills under different conditions. An
additional advantage of adding a new level is that we can use it to increase
the incentive to participate in the experiment, for example by only giving
access to the second level in the case of participation.

We expect an increasing number of toy robots with similar properties as
the Parrot AR drone to be available to the ‘crowd’. Hence, the methodology
proposed in this article will allow ever more people to contribute to robot
autonomy by playing games at home.
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