
Active Object Detection

G. de Croon
Universiteit Maastricht, MICC-IKAT

g.decroon@micc.unimaas.nl

1 INTRODUCTION

Object detection is the automatic determination of image locations at which instances
of a predefined object class are present. Numerous methods for object detection exist
(e.g., (Viola and Jones, 2001; Fergus et al., 2006)), most of which scan a part of the
image at some stage of the object-detection process. Until now, this scanning is per-
formed in a passive manner: local image samples extracted during scanning are not
used to guide the scanning process. We mention two main object-detection approaches
that employ passive scanning here. The window-sliding approach to object detection
(e.g., (Viola and Jones, 2001)) employs passive scanning to check for object presence
at all locations of an evenly spaced grid. This approach extracts a local sample at
each grid point and classifies it either as an object or as a part of the background. The
part-based approach to object detection (e.g., (Fergus et al., 2006)) employs passive
scanning to determine interest points in an image. This approach calculates an interest-
value for local samples (such as entropy of gray-values at multiple scales (Kadir and
Brady, 2001)) at all points of an evenly spaced grid. At the interest points, the approach
extracts new local samples that are evaluated as belonging to the object or the back-
ground. Although some methods try to limit the region of the image in which passive
scanning is applied (e.g., (Murphy et al., 2005)), it remains a computationally expen-
sive and inefficient scanning method: at each sampling point computationally costly
feature extraction is performed, while the probability of detecting an object or suitable
interest point can be low.

In this article, we investigate an object detection method that employs active scan-
ning (based on (de Croon and Postma, 2006)). In active scanning local samples are used
to guide the scanning process: at the current scanning position a local image sample is
extracted and mapped to a shifting vector indicating the next scanning position. The
method takes successive samples towards the expected object location, while skipping
regions unlikely to contain the object. The goal of active scanning is to save compu-
tational effort, while retaining a good detection performance. In a companion article,
we address the importance of our approach in the context of Embodied Cognitive Sci-
ence (X). In this article we focus on the practical applicability in computer vision. In
particular, we verify whether the method reaches its goal for a real-world task of face
detection that has been studied before in (Kruppa et al., 2003; Cristinacce and Cootes,
2003). We compare the method’s performance and computational complexity with that

1



of the object detectors (belonging to the window-sliding approach) employed in the
previous studies.

The remainder of the paper is organised as follows. In Section 2, we give a gen-
eral overview of the object-detection method. Then, in Section 3, we explain our ex-
perimental setup for a task of face detection. In Section 4 we analyse the results of
these experiments, comparing the active object-detection method with methods of the
window-sliding approach. We draw our conclusions in Section 5.

2 ACTIVE OBJECT-DETECTION METHOD

The active object-detection method (AOD-method) scans the image for multiple dis-
crete time steps in order to find an object. In our implementation of the AOD-method
this process consists of three phases: (i) scanning for likely object locations on a coarse
scale, (ii) refining the scanning position on a fine scale, and (iii) verifying object pres-
ence at the last scanning position with a standard object detector. Both the first and the
second phase are executed by an ‘agent’ that extracts features from local samples, and
maps these features to scanning shifts in the image. We refer to the agent of the first
phase as the ‘remote’ agent and to the agent of the second phase as the ‘near’ agent.

Figure 1 illustrates one time step in the scanning process. At the first time step
(t = 0) of a ‘run’, the remote agent takes a local sample at an initial, random location
in the image, indicated with an ‘x’ in Figure 1. The local sample consists of the gray-
values in the scanning window. First, the agent extracts features from this local sample.
Then, its controller transforms these features to a scanning shift in the image. This shift
is illustrated by the dashed arrow; it leads to a new scanning location that is indicated
by an ‘o’ in the figure. If a scanning shift takes the sampling window (partially) outside
of the image, the scanning position is reset to the closest image position for which the
window is entirely inside the image. On the next time step (t = 1), at the new scanning
location, the process of feature extraction and shifting is repeated. The sequence of
sampling and shifting continues untilt = T, whereT is an experimental parameter.
The goal of the remote agent is to center the local sampling window on an object at
t = T. Because the remote agent does not always succeeds in its goal, we employ a
near agent. It starts scanning at the final scanning position of the remote agent and
makes scanning shifts untilt = 2T. At t = 2T we verify object presence at the final
scanning position with a standard object detector, such as the one in (Viola and Jones,
2001).

In order to achieve successful object detection, we need to optimise the remote and
near agents’ settings. We optimise the remote and near agent separately: first the re-
mote agent with random starting positions, then the near agent with starting positions
that resemble the end positions of the remote agent. Both agents haveT time steps to
localise an object. For both agents, we have to select features that contain informa-
tion on the target object’s location and we have to find a controller that exploits this
information in the right way, so that the centre of the sampling window is on a target
object at the end of scanning (t = T). In our experiments we utilise the integral features
of (Viola and Jones, 2001) as features, and a feedforward neural network as the con-
troller. We employ an evolutionary algorithm to select the featuresand optimise the
neural network weights, for the following two reasons. First, an evolutionary algorithm

2



x

Feature Extract ion

Controller

o

Agent

Figure 1: One time step in the scanning process of the AOD-method. The method applies an
iterative process of taking a local sample (square window) at the current scanning location (‘x’),
extracting features from this sample, and mapping these features to a scanning shift (dashed
arrow) with a controller, in order to determine the new scanning location (‘o’). The goal of this
iterative process is to shift the scanning location to an object location.

can optimise both the controller and the feature extraction simultaneously. Second, an
evolutionary algorithm optimises the controller over the entire chain of samples and ac-
tions, fromt = 1 to t = T, enabling the agent to employ non-greedy scanning policies.
In Section 3, we explain our implementation of the method in more detail.

3 EXPERIMENTAL SETUP

In this section, we discuss the implementation details of the agents (Subsection 3.1),
the details on the evolutionary algorithm (Subsection 3.2) and the object-detection task
used in our experiments (Subsection 3.3). Finally, we give the exact experimental
settings (Subsection 3.4).

3.1 Agent Implementation

We first discuss the feature extraction and then the controller. For feature extraction,
we adopt the integral features introduced in (Viola and Jones, 2001). These features
represent contrasts in mean light intensity between different areas in an image. The
main advantages of these features are that they can be extracted with very little com-
putational effort, independent of their scale. Figure 2 shows the types of features that
we use in our experiments. For each feature that serves as input to the controller, the
evolutionary algorithm selects both the type and the corresponding area in the scanning
window (see Subsection 3.2). We illustrate an example of a feature in the bottom of
Figure 2. The feature is of type 1 and spans a large part of the right half of the scanning
window. The value of this feature is equal to the mean gray-value of all pixels in area
A minus the mean gray-value of all pixels in area B. The example feature will respond
to vertical contrasts in the image. Since all gray-values are in the interval[0,1], the
feature value is in the interval[−1,1].

We extractn features from the sampling window. They form a vector that serves as
input to the controller, which is a completely connected multilayer feedforward neural
network. The network hash hidden neurons ando = 2 output neurons, all with a
sigmoid activation function:f (x) = tanh(x). The two output neurons encode for the
scanning shift(∆x,∆y) in pixels as follows:∆x = bo1 jc, ∆y = bo2 jc. The constantj
represents the maximal displacement in the image in pixels.

3



Figure 2: Possible feature types (top part of the figure) and an example feature shown in the
scanning window (bottom part of the figure). The value of a feature is the mean gray-value of
the pixels under the white area (area B for the example feature) minus the mean gray-value of
the pixels under the gray area (area A for the example feature).

3.2 Evolutionary Algorithm

We employ a ‘µ,λ’ evolutionary algorithm (B̈ack, 1996) to select the features and opti-
mise the neural network weights of both the remote and the near agent. We first evolve
the remote agent for uniformly distributed starting positions, and then the near agent
in the following manner. We measure the average distance of the evolved remote agent
to the nearest object att = T in the images of the training set. Then, we evolve the
near agent for positions that are normally distributed with as mean an object position
and as standard deviation the measured average distance att = T. We now explain the
evolutionary algorithm used to optimise both the remote and the near agent. We split
evolution in two: in the first half of evolution we evolve both the features and the neural
network weights. In the second half, we only evolve the neural network weights, so
that the controller can exploit the evolved features to the fullest.

Evolution starts with a population consisting ofλ different agents. An agent is rep-
resented by a vector of real values (doubles), referred to as the genome. In this genome,
each feature is represented by five values, one for the type and four for the two coordi-
nates inside the scanning window. In the genome, the feature parameters are followed
by the neural network weights. Each weight is represented by one value. Thus, the
genome consists of5n genes for the feature encoding, plus(h(n+ 1)+ o(h+ n+ 1))
genes for the neural network (including bias weights). We evaluate the performance of
each agent on the task by letting it performR runs per training image, each ofT time
steps. The fitness function we use to evaluate an agent in the first half of evolution,
consists of both a distance and a recall-term:

f1(a) = (1−distance(a))+ recall(a) (1)

Where distance(a) ∈ [0,1] is the distance between the agent’s scanning position
at t = T and its nearest object, averaged over all training images and runs. The term
recall(a) is the average proportion of objects that is detected per image by an ensemble
of R runs of the agenta. An object is detected if the scanning position is on the object.
When all agents have been evaluated, we select theµ agents with highest fitness values
to form a new generation of agents. The best agent is tested on the validation set
of images. This fitness value is recorded, so that we can select the best agent of the
entire evolution at the end of evolution. Each selected agent hasλ/µ offspring, so
that the population size remains constant over time. To produce offspring, there is
a pco probability that one-point cross-over occurs with another selected agent, and

4



a (1− pco) probability that the agent’s genome is simply copied. Furthermore, the
genes of the new agent are mutated with a probability ofpmut. When a feature gene
is mutated, it receives a new random value in the interval[0,1]. When a weight gene
is mutated, the new weight is determined on the basis of the old weight as follows:
wnew= wold + r∆w, wherer is a random number in the interval[−1,1] and∆w is one
of the parameters of the evolutionary algorithm (see Subsection 3.4). The population
of agents of the new generation are again evaluated on the images of the training set.
The process of fitness evaluation and procreation is continued forG generations. As
mentioned at the beginning of this subsection, we stop evolving the features in the
middle of the evolution. AtG/2, we setpco to 0, since cross-over might be disruptive
for the optimisation of neural network weights (Yao, 1999). In addition, we adjustpmut

according topmut = pmut/2 everyG/q generations in order to gradually converge to
a solution, withq¿ G/2. Finally, we also change the fitness functionf1 to f2, as to
represent our real goal in the detection task:

f2(a) = recall(a) (2)

At the end of evolution, we select the agent that has the highest weighted sum
of its fitness on the training set and validation set. These fitness values are weighted
according to the respective sizes of training and validation set. This procedure aims to
prevent overfitting on the training set.

The near agent is evolved in exactly the same manner as the remote agent, except
for the different starting positions (close to the objects) and the fitness function:

g(a) = (1−distance(a))+precision(a) (3)

, which does not change atG/2. precision(a) is the proportion of runsR of the near
agent that detect objects at the end of the run. The goal of the near agent is to refine
the scanning position reached by the remote agent, by detecting the nearest object and
approaching its center as much as possible.

The third phase of the AOD-method, the object detector that verifies object-presence
at the last scanning position, is not evolved, but trained according to the training scheme
in (Viola and Jones, 2001).

3.3 Face-detection Task

We apply the AOD-method to a face-detection task. Since we want to compare it
with other existing object-detection methods, we choose a publicly available dataset to
which such methods have already been applied. In particular, we use the FGNET video
sequence (http://www-prima.inrialpes.fr/FGnet/), which contains video sequences of a
meeting room, recorded from two different cameras. For our experiments we used the
joint set of images from both cameras (’Cam1’ and ’Cam2’) in the first scene (’ScenA’).
The set consists of 794 images of720×576pixels, which we convert to gray-scale. We
use the labelling that is available online, in which only the faces with two visible eyes
are labelled. For evolution, we divide the image set in two parts: half of the images
is used for testing and half of the images for evolution. The images for evolution are

5



divided in a training set (80%), and a validation set (20%). We perform a two-folded
test to obtain our results, and run one evolution per fold.

3.4 Experimental Settings

Here we provide the settings for our experiments. The maximal scanning shiftj is
equal to half the image width for the remote agent, and equal to one third of the image
width for the near agent. The scanning window is a square with sides equal to one third
of the image width for the remote agent, and one fourth of the image width for the near
agent. The number of time steps per agent isT = 5, and the number of runs per image
R is 20. We usen = 10 features that are extracted from the sampling window. We
set the number of hidden neuronsh of the controller ton/2 = 5, while the number of
output neuronso is 2. We set the evolutionary parameters as follows:λ = 100, µ= 25,
G = 300, pmut = 0.04, pco = 0.5, ∆w = 0.20, andq = 8.

4 RESULTS

We first show and discuss the behaviour of the evolved remote and near agents (Sub-
section 4.1). Then we compare the performance of the AOD-method with the per-
formances attained in two other studies (Kruppa et al., 2003; Cristinacce and Cootes,
2003) (Subsection 4.2). In addition, we compare the computational effort of the AOD-
method with an object detector of the window-sliding approach to object detection
(Subsection 4.3). Finally, we discuss the application generality of the approach (Sub-
section 4.4).

4.1 Behaviour of the Evolved Agents

In this subsection, we give insight into the scanning behaviour of the remote and near
agents evolved on the first fold (their behaviour on the second fold is similar).

Figure 3: Ten independent runs of the remote agent.
Figure 3 shows ten independent runs of the remote agent. Att = 0, all runs are ini-

tialised at random positions in the image. The method then successively takes samples
and makes scanning shifts. Each scanning shift is represented by an arrow. The shifts
guide the scanning process to locations that are likely to contain target objects. At the

6



end of scanning (t = T) seven out of ten runs have reached an object location. The final
locations of the runs are indicated with circles.

The figure indicates that the evolutionary algorithm found suitable features and
neural network weights for the remote agent. Figure 4 shows the ten evolved features
inside the scanning window (white box) centered in the image (‘x’ indicating the scan-
ning location) and the types, sizes and locations of the features. Although it is not
straightforward to interpret the features, we can see that it contains both coarse con-
textual features (e.g., features 2 and 9) and more detailed object-related features (e.g.,
features 3, 5, and 8).

Feature 1 Feature 2 Feature 3 Feature 4 Feature 5

Feature 6 Feature 7 Feature 8 Feature 9 Feature 10

Figure 4: The ten features of the remote agent, projected on the scanning window (white box).
The center of the scanning window is indicated by a white cross.

The controller maps these features to scanning shifts that approach the target ob-
jects. In Figure 5, we illustrate the function of the remote agent’s controller by taking
local samples at a fixed grid, and visualising both the direction and size of the scanning
shifts that it determines. The controller defines a gradient map on the image, and a
single run of the method follows this gradient either until it reaches a local optimum,
or until t = T. The bodies of the persons, and the heads in particular, form attractors
in the gradient maps. The images show that few arrows go upwards (with as an ex-
ception the left image that includes a standing person). This property of the behaviour
is mainly due to two factors. First, the prior distribution of object locations is such
that faces usually occur in the lower half of images. Second, the fitness function of
the remote agent promotes recall. Since the agent is evaluated on the ensemble ofR
runs, it can ‘loose’ a few runs in the bottom of the image as long as the other runs are
successful. This issue raises the question whether the method exploits more than just
the prior distribution of face-locations in the image. The fact that the AOD-method
can only use visual features (and has no inputs representing coordinates) proves that it
cannot exploit this prior distribution directly. However, indirectly the prior can influ-
ence the method’s choice for a scanning shift if the features contain little information
on the object position. Indeed, in the face images, the remote agent seems to have a
preference for moving down instead of up. However, as the left gradient map in Figure
5 shows, the method can move up, if the features contain information that the object is
positioned above the current scanning location. In addition, in (de Croon and Postma,
2006), a different version of the AOD-method performed well on a task of license-plate
detection in which there was no strong prior distribution of object locations.

Finally, in Figure 6, we show the scanning behaviour of the near agent, close to
one of the objects. The near agent considerably improves performance on the detection
task, as will be shown in the next subsection.

7



Figure 5: Actions of the remote agent at different locations in two of the images from the
FGNET-set. Note that in the labeling we used, the face of the left person is not labeled in
either image, since he does not look into the camera.

Figure 6: Actions of the second agent near objects.

4.2 Performance Comparison

In the introduction we stated that our main reason for investigating active scanning
is to achieve a higher computational efficiency. However, for such an efficiency to be
relevant, the active object-detection method must at least have a sufficient performance,
expressed in detection ratio and the number of false positives per image. Therefore, in
this subsection, we first focus on the performance of the AOD-method.

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FPs / image

R
ec

al
l

 

 

Kruppa et al. − context

Kruppa et al. − V&J

Cristinacce & Cootes − V&J

Cristinacce & Cootes − F−K

AOD: first agent

AOD: sequential

AOD: seq + V&J

Figure 7: FROC-curves of the different object-detection methods.
How well does the AOD-method perform on the FGNET image set? A standard

manner of illustrating the performance of a classifier is to construct an FROC-plot that
plots the detection rate against the average number of false positives per image. Since
most object detection methods mainly rely on a binary classifier, such an FROC-curve
can be constructed by varying the threshold of this classifier. Because the two first
phases of the AOD-method (the scanning of the remote and near agent) are at least as
important as the binary classifier for the method’s performance, it is less obvious how
we can construct an FROC-curve. Here we mention three factors that are of influence.

8



Firstly, the active scanning approach itself represents a choice for computational effi-
ciency at the possible cost of the number of detections. Namely, this approach implies
that parts of the image are skipped. Secondly, the fitness function is of influence on the
FROC-curve. For example, the fitness function of the remote agent puts an emphasis
on recall, i.e., the proportion of detections, while the fitness function of the near agent
emphasises precision, i.e., a low number of false positives. Thirdly, the number of in-
dependent runs is positively related to the detection rate and false positive rate. The
higher the number of runs is, the more detections and false positives there are. We use
the third factor to construct the FROC-curve of the AOD-method, since it is the easiest
factor to vary. We useR= 1,3,5,10,20, and30.

Figure 7 shows an FROC-plot of our experimental results (square markers, thick
lines), for the remote agent alone (solid line), the remote and near agent in sequence
(dashed line), and the sequential agent followed by the first stage of a Viola and Jones-
detector trained according to the training scheme in (Viola and Jones, 2001) (dotted
line). The results of the AOD-method followed by the first stage of a Viola and Jones
detector are only based on the first testing fold. In addition, the figure shows the re-
sults on the FGNET image set from (Cristinacce and Cootes, 2003) (thin lines), of a
Fröba-Küllbeck detector (Fr̈oba and K̈ullbeck, 2002) (‘+’-markers) and a Viola and
Jones detector (Viola and Jones, 2001) (‘o’-markers). It also shows the results of two
Viola and Jones detectors trained on a separate image set and tested on the FGNET set
(Kruppa et al., 2003) (thick lines). The first of these detectors attempts to detect face
regions in the image, as the detectors in (Cristinacce and Cootes, 2003) (‘o’-markers).
The second of these detectors attempts to detect a face by including a region around
the face, including head and shoulders (‘x’-markers).

Figure 7 shows that the AOD-method outperforms the window-sliding approaches
that did not include a face’s context for detection rates higher than 65%. Detecting
faces without considering context is difficult in the FGNET video-sequence, because
the appearance of a face can change considerably from image to image (Cristinacce
and Cootes, 2003). However, the context of a face (such as head and shoulders) is
rather fixed. This is why approaches that exploit this context (Kruppa et al., 2003;
Bergboer et al., 2004) have a more robust performance. The active object-detection
method exploits context even to a greater extent than the methods studied in (Kruppa
et al., 2003; Bergboer et al., 2004) that only include a small area around the object.

Interesting is the difference between the Viola and Jones-classifier used in (Cristi-
nacce and Cootes, 2003) and (Kruppa et al., 2003). This difference can be explained
by at least three factors: the different training set, different parameter settings of the
training method for the Viola and Jones-classifier, and a different labeling. In (Kruppa
et al., 2003) profile faces are also labeled, while such faces are not labeled in the label-
ing available online.

Small differences between the experiments aside, the results show that the AOD-
method performs at par with other existing object detection methods on the FGNET
face-detection task.

9



4.3 Computational Efficiency

The main advantage that we envisaged for the AOD-method is a higher computational
efficiency than the existing object-detection methods that passively scan images. In this
section, we first make a general comparison of the computational efforts of a window-
sliding approach (WS) and of an active object-detection approach (AOD). Then, we
estimate the computational efforts for the methods employed in our experimental setup.

4.3.1 General Comparison

The computational costsC of a window-sliding approach (WS) and an active object-
detection approach (AOD) can be expressed as:

CWS = GHGV(FWS+Cl)+P (4)

CAOD = R(2T)(FAOD +Ct)+R(FWS+Cl)+P (5)

The variablesGH andGV are the number of horizontal and vertical grid points, respec-
tively. Furthermore,FWS is the number of operations necessary for feature extraction
in the window-sliding approach,Cl for the classifier, andP for preprocessing. For the
AOD-approach,R is the number of independent runs and2T the number of time steps
at which local samples are used for scanning shifts.FAOD is the number of operations
necessary for feature extraction, andCt for the controller that maps the features to scan-
ning shifts. The cost of the AOD-approach includesR(FWS+Cl), since we assume that
object-presence is verified at the final scanning position.

The AOD-approach is computationally more efficient than the window-sliding ap-
proach. The main reason for this is that the AOD-approach extracts far fewer local
samples, i.e.,(R(2T) + R) ¿ GHGV , while its feature extraction and controller do
not cost much more than the feature extraction and classifier of the window-sliding
approach. For example, in the FGNET-task a window-sliding approach that verifies
object presence at every point of a grid with a step size of two pixels will extract
335×248= 83,080 local samples (based on the image size, the average face size of
50×80pixels, and the largest step size mentioned in (Viola and Jones, 2001)). In con-
trast, the AOD-method extractsR(2T +1) = 20×11= 220local samples (based on the
sequential agent in combination with a classifier). Under these conditions, the window-
sliding approach extracts377.6 times more local samples than the AOD-method1.

4.3.2 Estimate of Computational Effort

We estimate the computational effort of both methods for the face-detection task, ex-
pressed in a number of operations. We make conservative choices in the estimate of
the computational efforts for the window-sliding method, the Viola and Jones detector
(Viola and Jones, 2001). Importantly, we assume thatGH = GV = 100, a conservative

1Note that we did not take object detection at different scales into account here. The number of scales
at which an object can occur would imply a new multiplication factor for the computational costs, which is
disadvantageous for the window-sliding approach.

10



value since it implies step sizes of∆x≈ 7 and∆y≈ 5 in the images of the FGNET-task.
These values imply that the AOD-method extract45 times fewer local samples. In our
estimate of the Viola and Jones detector, we preferrably base ourselves on the research
in (Cristinacce and Cootes, 2003; Kruppa et al., 2003). However, if necessary, we use
information from (Viola and Jones, 2001) to arrive at our estimates. We estimate the
remaining variables in equation 4 and 5 as follows:

• FWS = 64,FAOD = 80: In (Viola and Jones, 2001), the computational cost of
feature extractions was expressed in array references. The different features in
Figure 2 require from 4 to 12 references, with as average≈ 8 references. The
averagenumberof features extracted per scanning location in (Cristinacce and
Cootes, 2003; Kruppa et al., 2003) has not been mentioned, but in (Viola and
Jones, 2001) it was mentioned to be 8 on average for a task of face detection.
The AOD-method extracts 10 features per local sample.

• Cl = 9,Ct = 94: The classifier of the window-sliding approach makes a linear
combination of the features and compares this to a threshold, and therefore we
estimate its cost at the average number of features extracted plus one:8+ 1 =
9. In the neural network of the AOD-method, each hidden and output neuron
computes a linear combination of its inputs and puts the result into the activation
function: Ct = h∗ (n+ 1)+ o∗ (h+ n+ 1)+ (h+ o) = 94. The first two terms
represent the computational costs for the linear combinations made in the hidden
and output neurons, respectively. The last term,h+o, represents the cost for the
activation functions.

• P = 414,720: Both methods need to calculate an ‘integral image’ (see (Viola
and Jones, 2001)) for their subsequent feature extractions. The computational
cost of the calculation of the integral image is a pass through all pixels of the
image, being414,720pixels for the720×576images. We ignore the fact that in
the current implementation the AOD-method does not use an additional integral
image for normalisation, while the Viola and Jones detectors in (Cristinacce and
Cootes, 2003; Kruppa et al., 2003) most probably do.

These estimates lead to the computational costs ofCWS = 1,144,720andCAOD =
450,980: the application of active scanning roughly results in a halvation of compu-
tational effort. Note that the calculation of the integral image constitutes the main
part of the computational costs for the AOD-method. Integral features might therefore
(from a computational point of view) not be the ideal choice for the AOD-method. The
low number of local samples extracted may open the possibility of using more costly
features, while retaining the possibility for real-time application of the method.

4.4 Application Generality

The computational efficiency of the AOD-method comes at the expense of application
generality. Namely, both the speed and the good performance of the method rely on
the exploitation of the steady properties of an object’s context. If these properties are
present in the test images, the method is still able to detect objects. For example, Figure

11



8 shows how the remote agent behaves if it is applied to photos taken in our own
office. For illustration purposes, we show 10 independent runs of the remote agent
per image. Each scanning shift is represented by an arrow, while the last scanning
position has a circle. The run of the remote agent is followed by the first stage of a
Viola and Jones classifier, where the runs shown in black belong to runs for which
the last scanning position was classified as an object position. In both images the
independent runs cluster at the heads, since the office walls are relatively uncluttered
(with an occasional poster) as in the FGNET video-sequence. However, if the exploited
contextual properties are not present (as in many outdoor images for example) detection
performance degrades considerably. The question is how limiting this loss of generality
is. Findings on the human visual system (Henderson, 2003) suggest that this limitation
may be relieved by extending the AOD-method, so that different scanning policies are
applied to different visual scenes.

Figure 8: Generalisation of the evolved method to other office environments.

5 CONCLUSION

We conclude that the AOD-method meets its goal on the FGNET face-detection task:
it performs at par with existing object-detection methods, while being computationally
more efficient than a window sliding method. In a conservative estimate the active
object-detection method extracts 45 times fewer local samples than an object detector
of the window-sliding approach, approximately leading to a halvation of the computa-
tional effort. The advantages of the AOD-method derive from the fact that it exploits
the context of an object, instead of only object features. These advantages come at the
cost of application generality.

REFERENCES
Bäck, T. (1996). Evolutionary Algorithms in Theory and Practice. Oxford University Press,

New York, Oxford.

Bergboer, N. H., Postma, E. O., and van den Herik, H. J. (2004). A context-based model of at-
tention. InProceedings of the 16th European Conference on Artificial Intelligence (ECAI),
Valencia, Spain, pages 927–931.

Cristinacce, D. and Cootes, T. (2003). A comparison of two real-time face detection methods. In
4th IEEE International Workshop on Performance Evaluation of Tracking and Surveillance,
pages 1–8.

de Croon, G. and Postma, E. O. (2006). Active object detection. InBelgian-Dutch AI Conference,
BNAIC 2006, Namur, Belgium.

12



Fergus, R., Perona, P., and Zisserman, A. (in press - 2006). Weakly supervised scale-invariant
learning of models for visual recognition.International Journal of Computer Vision.

Fröba, B. and K̈ullbeck, C. (2002). Robust face detection at video frame rate based on edge ori-
entation features. In5th international conference on automatic face and gesture recognition
2002, pages 342–347.

Henderson, J. M. (2003). Human gaze control during real-world scene perception.TRENDS in
Cognitive Sciences, 7(11).

Kadir, T. and Brady, M. (2001). Scale, saliency and image description.International Journal of
Computer Vision, 45(2):83–105.

Kruppa, H., Castrillon-Santana, M., and Schiele, B. (2003). Fast and robust face finding via local
context. InJoint IEEE International Workshop on Visual Surveillance and Performance
Evaluation of Tracking and Surveillance (VS-PETS’03), Nice, France.

Murphy, K., Torralba, A., Eaton, D., and Freeman, W. (2005). Object detection and localization
using local and global features. InSicily workshop on object recognition. Lecture Notes in
Computer Science.

Viola, P. and Jones, M. J. (2001). Robust real-time object detection.Cambridge Research
Laboratory, Technical Report Series.

Yao, X. (1999). Evolving artificial neural networks.Proceedings of the IEEE, 87:1423 – 1447.

13


