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Introduction 

Efficiency in terms of mass and energy 
consumption, stability and adaptability with respect to 
unknown environments, intelligent behaviours in 
critical decision making processes, are all desirable 
features for autonomous spacecrafts. Interesting 
solutions to these issues can be found in nature: 
biological systems, indeed, possess autonomy by 
excellence. In this work, we present a bio-inspired 
approach to spacecraft landing that uses a model of 
human visual attention to guide the descent towards 
safe and interesting sites. The selected site for pin-
point landing is, then, fed to an internal process which, 
based on optimal control theory, returns the thrust 
value necessary to execute the manoeuvres towards the 
target of interest. The novelty of our work stands from 
the use of a visual attention model, which provides the 
spacecraft with human perception abilities, in 
combination with a controller, which enables the robot 
(the spacecraft in our case) to select a proper action on 
the basis of simple representation of the self and of the 
world. 

Unmanned Spacecraft Landing 
Safe landing on celestial bodies is a fundamental 

step for space exploration. The current practice for 
landing missions design is based on off-line selection 
of landing sites: scientists examine and select aerial 
images obtained, a priori, via satellites. Once the 
landing site is selected, the spacecraft performs a 
‘blind’ landing operation with little provision of 
corrective manoeuvres prior to touchdown [1]. Because 
of the relative inaccuracy of the landing path followed 
by the spacecraft, and of the relative uncertainty on the 
safety of the selected landing area, dangerous 
circumstances can occur and lead to mission failure. 
On-line remote control by human operators is an 
improbable and risky solution because of limited and 
unstable communication bandwidth and significant 
delays. For this reason, onboard reliable hazard and 
avoidance capabilities are a necessary requirement for 
next generation of autonomous unmanned spacecrafts.  

In addition to the above issues, other two main 
factors influence landing mission design: reachability 
and scientific return. Reachability is an engineering 
problem which indicates fuel sufficiency associated to 
retargeting operations. Even when safe sites are 
identified, landing manoeuvres cannot be guaranteed if 
onboard fuel availability is neglected. Mission costs 
can also be reduced if landing sites are close to 
interesting locations, thus facilitating samples retrieval 
and increasing scientific return. Again, a pre-selection 
of multiple potential interesting sites is performed off-
line by scientists. This procedure can be limiting 
during exploration of unknown environments, where 
undiscovered sites can contain novel unpredictable 
scientific findings. A example that well illustrates this 

limitation appears in Planet 51, the 2009 animated 
science fiction film written by Joe Stillman, where an 
intelligent rover, upon landing on a new planet, is able 
to collect only samples of stones and this imprinted 
selectivity leads it to consider the alien creatures living 
on the planet as uninteresting. If the rover had 
possessed the ability to visually discern intrinsic salient 
objects, instead of specific target only, it would not 
have missed the aliens. 

While considerable work has been done for 
automating safe sites selection, using landmarks 
detection algorithms based on the onboard sensors 
capabilities [2]-[3]-[4]-[5] (i.e. craters detection, 
analysing cameras images, terrain features 
characterization, such as slope and roughness, 
processing RADAR and LIDAR signals), methods for 
interesting sites detection always refer to a priori maps, 
ranked by scientists according to specific scientific 
criteria. Because this last approach can affect the 
flexibility and constrain the autonomy of the lander, we 
propose to introduce in the control loop of the landing 
process a model which mimics human ability of 
selecting saliency in the visual field, thus providing the 
spacecraft with fast pre-attentive processes.  

Continuous retargeting, during the descent, 
requires autonomous onboard re-planning of the 
guidance trajectory. We addressed this issue using an 
optimal feedback control based on a simplified 
spacecraft model and a coarse numerical grid. The 
chosen approach agrees with recent scientific findings 
on optimality principles found in the sensorimotor 
control of biological systems [6]-[7].  

Model of Human Pre-attentive Vision for 
Autonomous Saliency Detection 

Selective visual attention allows humans and 
animals to quickly shift the gaze towards specific 
attractive targets in the visual environment. This ability 
has evolutionary explanation: it enables organisms to 
rapidly detect their pray, escape from predators and 
recognize mates. In humans, attentive processes 
assume also an important role in higher cognitive 
mechanisms such as learning and memory.  

According to studies on primate visual cortex [8], 
two different dynamical forms of attention can be 
identified: a pre-attentive form and a more complex 
form of attention. In the first form, also referred as 
‘bottom-up’, simple features (such as, intensity, colour 
opponency and orientation) are processed rapidly and 
in parallel over the entire visual field and intrinsic 
saliency of objects is automatically detected. The 
second form, referred as ‘top-down’, is tuned by 
voluntary control, it is slower, conjugate features are 
processed serially, and the saliency of objects is 
dependent of specific task (or interest).  

In this work, we focused on the ‘bottom-up’ 
attentional mechanism. Fast computation is, indeed, a 



requirement for real-time processing and onboard 
analysis; parallel neuro-biological architectures are 
suitable for implementation on VLSI (very-large-scale-
integration) systems and FPGAs (Field-programmable 
Gate Array); detection of intrinsic saliency (mostly 
context-dependent and encoded in terms of center-
surround mechanisms) provides major flexibility with 
respect to methods based on a priori knowledge.  

The computational model, we used, is based on 
neuro-physiological findings and has been proposed 
first by Koch and Ullman (1985) [8], later extended by 
Itti et al. (1998) [9]. It can be described by the 
following steps: 1) early visual features are computed 
in a set of pre-attentive feature maps receiving input 
image; 2) the activity from all feature maps is 
combined at each location, giving rise to a topographic 
saliency map which codes for how different and how 
salient a particular stimulus is relative to its 
neighbourhood; 3) a winner-take-all network detects 
the most salient location and directs attention towards 
it; 4) an ‘inhibition of return’ (IOR) mechanism 
inhibits tagging of recently attended location and 
allows to shift to the next most salient location, 
endowing the search process with internal dynamics. 
This model has been proven to qualitatively reproduce 
human performances on a number of classical search 
experiments [10]. 

Optimal control for trajectory re-planning 
 In line with the ideas presented in [6]-[7] we 

developed a control feedback based on optimal control 
theory. The spacecraft uses a simplified model of itself 
(3 DOF) and a coarse time grid (3 points) to plan its 
thrust profile at each time instant (see Fig. 1 for a 
visual depiction of such a simplified internal 
representation of the world). Still, the resulting descent 
(see Fig. 2) turns out in a successful landing using only 
1% more propellant mass but able to correct for 
imperfections in the dynamics and thrust actuation. 

We demonstrated that same results are obtained by 
changing the final condition of the pin-point landing 
(which means imposing a different final landing point) 
and/or imposing a gravity-turn descent (which means 
constrains to zero the horizontal velocity at the landing 
point) or when any specific final position is required 
(free landing).  

Landing Simulation 
The proposed control architecture for the landing 

mission is schematically represented in Fig. 3. It is 
designed for the final path of the landing trajectory, 
starting from the high-gate position (at about 2.3 Km) 
and ending to the touchdown point.  

PANGU 3.10 [11], planet surface simulator, has 
been used to generate Digital Elevation Maps (DEMs) 
which reproduce images acquired by the spacecraft’s 
onboard camera.  

At each position, the acquired image is processed 
by two modules: the Neuromorphic Visual Attention 
module, which includes the bio-inspired bottom-up 
model, computes a Saliency Map; the Surface Variance 
Estimator module produces a Safety Map or Hazard 
Map, where low variance areas are defined as safe 
landing sites.  In Fig. 4 a snapshot of the maps 

provided by these two modules are shown: 5 salient 
points (blue crosses) and the safe location (red cross) 
closest to these interesting sites are projected onto the 
image of the planetary surface, about 200 meters below 
the spacecraft (Fig. 4a). 

A parallel process passes through the Optimal 
Control module which computes a Cost Map, 
indicating the fuel consumption associated to the 
optimal trajectory. Given initial conditions and 
dynamics constraints, the implemented optimal control 
allows to estimate at each point and in real-time the 
thrust policy which maximizes the spacecraft mass.  

The three maps enter a decision-making process 
module which estimates the candidate landing point 
according to safety, scientific return (represented by 
the Saliency Map) and fuel costs criteria. In the 
feedback control loop, the final landing position is 
input for Optimal Control module which updates the 
spacecraft trajectory.  
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Fig. 1 Optimal Simplified Plan at the beginning of the 
simulation: since the 1st second of the simulation, the 
spacecraft is able to build an internal model of the reality by 
efficiently designing the entire trajectory (blue line) and 
estimating the thrust vectors (black arrows).  
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Fig. 2 Actual descent profile: external representation of the 
entire trajectory after 54 seconds, close to the touchdown 
instant. 
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Fig. 3 Schematic of the control architecture 
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Fig. 4 Image Processing: a) image of the planetary surface 
below the spacecraft; b) Saliency Map; c) Safety or Hazard 
Map. The blue square indicates the region containing the first 
5 more salient sites, blue crosses; the red cross points at the 
safe site closest to the salient points. 

 
Conclusions 

In this stage of the work, we tested the three 
modules (Neuromorphic Visual Attention, Surface 
Variance Estimator and Optimal Control) separately in 
Simulink environment. We showed how the integration 
of a pre-attentive process allows the spacecraft to 
exhibit human-like behaviours in the selection of 
salient landing sites. We also demonstrated that the 
proposed trajectory re-planning module, based on 
optimal control and on a simple internal model of the 
spacecraft self and of the world, provides for a robust 
and efficient autonomous landing architecture.  

In this extended abstract we provided a brief 
overview of our system's components. In the final 
version of the paper we will present an in-depth 
discussion on their overall integration, along with a 
study of the real-time computing capabilities of such 
architecture.  

A more extensive study of the trade-offs between 
simplicity in the estimated model of the world, and 
achievable optimality of the landing trajectory will be 
required, together with a platform for testing the 
system’s performance with respect to a ground truth 
built on human judgements about saliency and safety 
issues. 

Finally, we note that, though the described 
framework has been proposed for autonomous landing, 
it could also be readapted for application to navigation 
and exploration in unknown environments.  
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