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ABSTRACT

We present a feasibility study on using the scale of SIFT-
features for estimating time-to-contact in space landing
scenarios. The time-to-contact is a measure of the lan-
der’s height divided by its vertical velocity. In this fea-
sibility study the lander is assumed to have a radar al-
timeter, using the time-to-contact for estimating the ver-
tical velocity. Experiments with virtual zooms on images
show that: (1) the image size, the number of frames per
second, and the amount of memory are important factors
for the success of using feature scales for time-to-impact
estimates, and (2) the distribution of estimates has many
outliers, necessitating robust estimators such as the me-
dian. Experiments with landing scenarios in the PANGU
simulator show that the vertical velocity estimates are ac-
curate enough for successful landing in different condi-
tions.
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1. INTRODUCTION

Autonomous landing is a crucial capability for extrater-
restrial exploration missions. Many existing studies fo-
cus on the use of passive cameras for state estimation,
since they are light-weight and consume relatively little
energy. Computer vision methods have been shown to
significantly improve the accuracy of the state estimates
used for landing (cf. [JWCE07, MTRT09, SMS10]).

Flying animals are capable of safe and accurate landings,
while using limited sensors and processing. Therefore,
they have served as inspiration for extraterrestrial land-
ing studies [OBI09, VRVS10, IWSss]. The focus of these
studies is on the use @kntral optic flow a measure of
the translational velocity divided by the height. Bees are
known to use optic flow for controlling their speed and
height, also when landing [Pre87, BSZC05, BSB]. In
[VRVS10] a control law is studied that keeps the ventral
optic flow constant, leading to successful simulated land-
ings.

A related measure known to play an important role
in animal landings is théime-to-contact(e.g., [Lee67,

LDGWa93]). In the context of landing, the time-to-contact
is a measure of the height divided by the vertical veloc-
ityl. When approaching the ground, there is an increasing
expansion of imaged ground features. This expansion is
typically measured by means of the optic flow of interest
points in the image. The flow is directed away from the
focus of expansion (FoE), which indicates the direction of
travel. Accurate time-to-contact estimates depend on the
FoE either being known (as in a pure vertical descent) or
estimated. There are methods for estimating the FOE on
the basis of inertial measurements and optic flow vectors,
but it remains a difficult problem [TWO96, MGS08].

It is also possible to estimate the time-to-contact using
the scales of features in the images. In this article, we
use the features obtained with the Scale Invariant Fea-
ture Transform (SIFT) [Low04] to this end. Estimating
time-to-contact on the basis of SIFT feature scales has
the advantages that (i) SIFT features can also be used
for determining optic flow and recognizing a landing site,
(i) it may be less sensitive to (subpixel) errors than es-
timating the time-to-contact on the basis of optic flow,
and (iii) SIFT robustly matches features under larger im-
age transformations. Previous studies employing feature
scales [CG09, ANCO09] have focused on (robotic) driving
scenarios. In this article, we present a feasibility stuady o
using feature scales as an information source in extrater-
restrial landing scenarios.

The remainder of the article is organized as follows. In
Section 2, we explain how the feature size can be used
to determine time-to-contact and how it is implemented
in our experiments. In Section 3, we apply the method
to virtual approaches on the basis of the publicly avail-
able images of the lunar surface. The virtual approaches
are used to investigate some of the key method param-
eters required for successful time-to-contact estimates.
Subsequently, in Section 4, the time-to-contact estimates
are used in simulated landing scenarios. In principle the
time-to-contact could be used directly for controlling the
vertical thrust on the lander. However, in this feasibility
study the lander is assumed to use a radar altimeter for
determining the height and the time-to-contact for deter-
mining the vertical velocity. Conclusions are drawn in

Iplease remark that this measure is only equal to the actualéime t
contact if the velocity remains constant, which is typicalbt the case
in extraterrestrial landing scenarios.



Section 5.

2. TIME-TO-CONTACT

In this section, we first explain how feature scale can

be used for determining time-to-contact (Subsection 2.1).
Subsequently, the algorithm is introduced that estimates
the time-to-contact on the basis of the scales of SIFT fea-
tures (Subsection 2.2).

2.1. Estimation of time-to-contact with scale

Figure 1 shows a schematic of a lander at two subsequent
moments in time¢; andty = t; + At. The lander ob-
serves a feature on the ground, illustrated with a black
circle. The choice for a ‘spherical’ feature derives from
the assumptiorthat the scale of the feature does not de-
pend on the direction from which the lander observés it
Under this assumption, the scales of the feature in the im-
ages at the subsequent time stepsando-) only depend

on the distances with the landek (@andds). The altitudes

of the lander are indicated with, z,.
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Figure 1. Schematic of a lander observing a feature
(black circle) on the ground plane at two different time

steps. The scales of the feature in the images can be used

for determining the time-to-contact.

The scale and distance are related to each other as fol-
lows:
1)

implying that if the lander halves its distance to the fea-
ture, the feature’s scale in the image becomes twice as
large. Furthermore, we have the following relations:
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2This assumption has similar effects as the more common assump-
tion that the observer moves straight towards the center treapob-
ject with as normal vector the movement direction.

, Where co&x) and cogp) rely on the lander’s attitude
being known or estimated.

The time-to-contact is defined as follows:
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In the equationy is expressed in the number of frames.
It can be expressed in seconds as follows) = TAL.

The estimated time-to-contacts only equal to the actual
time to contact under thassumptionshat (i) the veloc-

ity of the lander is constant, and (ii) the landing surface
(on which the feature is located) is flat. We note that the
first assumption is typically violated. However, this can
be resolved either by updatingfrequently enough (as is
presumed in this study) or by fitting more complex mo-
tion models on the basis of multiple scale measurements
[MPN*09].

Equation 4 can be expressed in variables observed by the
lander as follows:
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which, with the help of equations 2 and 3, can be trans-
formed to: )
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If one assumes a camera with a relatively small field-of-
view (say < 40°), cog«a) and co$j) will be close to

1. Furthermore, having the time step between the two
observations go to 0 leads to the formula used in [CGO09,
ANCO09]:
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2.2. ScaleBased Vision Algorithm (SBVA)

To automatically find corresponding features in two im-
ages is a standard computer vision problem, to which
well-known solutions exist. The current state-of-the-art
in feature matching between images are the SIFT-features
mentioned in the introduction. They are invariant to scale
changes, translations, and rotations. The features are lo-
cated in an image pyramid and have a position, orienta-
tion, scale, and a descriptor used for the matching. The
scales of the features can be used for determining the
time-to-contactr.

During landing, the Scale Based Vision Algorithm
(SBVA) receives a series of subsequent images. Each
image is processed to locate SIFT-features, which are



matched to the features of the previous image. The 3. ZOOMING IN ON LUNAR IMAGES

matching is currently implemented in the standard way

[Low04], and is thus only based on the feature descrip-

tors (spatial restrictions based on state estimates of the In this section, we will report on experiments in which

lander and its camera can be added at a later stage). SBVA is applied to zooms of high-resolution lunar im-
ages. The zooms will correspond to a linear motion (de-

In general, the scale at timef the features,, is regarded scent with ‘constant’ speed). Hence, the goal in this sec-

as a noisy measurement of the true seale It is as- tion is not to model an actual descent, but to explore the

sumed that the noise is Gaussian with standard deviation €ffécts of SBVA parameters on the accuracy of the time-

n: s¢ ~ N(o,n). Considering the scale-measurements to-contact estimates. In particular, the following parame

as noisy implies that one can get a better estimate of the €rs will be varied:

true scalesr; by performing multiple observations over
time. Therefore, each feature is tracked to a maximum
number of images (time stepd), adding a new scale
each time that the feature has a match in the new im-
age. The ‘old’ feature’s descriptor is updated with the
new one, and the feature is removed if it has no match in
the new image.

To estimater for a single feature, a maximum like-
lihood linear fit is determined for the measurements
{s1,...,8m} with maxm) = M: o, = &t + o¢. The
slope of the line represenis while the point on the line

att represents;. Since SBVA always uses a linear fit of
the scales, there should exist a trade-off between higher
accuracy due to the size of the ‘memofy’ and the larger

error due to discrepancies between the actual motion and 4.

the linear motion model. Figure 2 illustrates the track-
ing of features over time (top) and the way in which the
m measurements per feature are used to estimébet-
tom).

Scale

Time

Figure 2. Features are tracked over multiple images, in
order to better estimaté. Top: The red circular feature

is tracked overn = 3 frames, while the square blue fea-
ture and green star feature are only trackedhin= 2 im-
ages. Bottom: Linear fits (dashed lines) are determined
for the scale measurements(crosses).

Each matched featurgresults in an estimate of the time-
to-contactry. The presence of multiple matched features
results in a distribution over different time-to-contaat-v
uesp(7). Both the mean value and the median value
of the distribution will be explored as estimation meth-
ods. The motivation for using the median value is that
the distribution may have a considerable number of out-
liers, which have a large impact on the mean.

1. Estimation method. The mean and the median
value of the distribution will be used as estimators.

2. Memory size. A larger memory size should lead to
a better accuracy, if the motion is linear (constant
descent speed).

3. Image size. The following image sizes in pixels are
investigated, because they are standard sizes in the
PANGU simulator used in Section 412 x 512,

256 x 256, and128 x 128. Larger image scales may
lead to more accurate scale estimates, but also imply
a larger computational effort.

Frequency of image acquisition. During a real de-
scent with a real camera, this would pertain to the
number of frames per second. A higher frequency
implies smaller transformations between the images,
which simplifies matching. However, scale differ-
ences between the images will also be smaller, prob-
ably taking them closer to the magnitude of the mea-
surement noise.

In Subsection 3.1, the experimental setup is explained.
Subsequently, the results are given in Subsection 3.2.

3.1. Experimental setup

For the zoom experiments, the high-resolution image
stitch of the Lunar Reconnaissance Orbiter Camera
(LROC) has been download&dFrom the image stitch
the center area df5000 x 15000 pixels is selected, since

it has little perspective effects. The image of the center
area has been resizedi@00 x 5000 pixels for use in the
experiments.

Zooms are then made at random places in the image by
employing a virtual camera with image dimensigar2 x

512. Initially, the virtual camera covers a zone2i00 x

2500 pixels in the overall image stitch. The zoom then
consists of linearly reducing in 23 steps the width and
height of the covered area until it covers an ared3sfx

333 pixels. At every step in the zoom, the covered image
area is resized to the camera dimensioBI&fx 512 with
bicubic sampling. All images are saved.

Shttp://1roc. sese. asu. edu/



SBVA is applied to the images in sequence, while storing
the time-to-contact estimatés The estimates are com-
pared to a ground-truth time-to-contact value that goes
from 26 at the firstimage to 3 at the last imAgEor vary-

ing the image dimensions, the saved images are loaded F

and resized. For varying the image capture frequencies a
larger step size of 2 is employed, implying that the zoom
is performed twice as fast (in 11 steps fr@s00 x 2500

t0 333 x 333). Per parameter setting4, image size, cap-
ture frequency) 10 zooms are performed. Figure 3 shows
four images from a zoom sequence on a part of the lunar
surface.

Figure 3. Four example images from an image zoom of
the lunar surface.

3.2. Reaults

Figure 4 shows the results for the different estimators for
image dimensioh12 x 512, a step size of 1, antll = 4.

The light blue lines represent thevalues over time for
the mean estimator. The thick blue line is the average
over all runs. The black line is the ground truth The
median estimator is illustrated with green lines. The bot-
tom graph shows the standard deviation of thelistri-
bution over time.

Figure 4 shows that the mean of tlig values results

in unreliable estimates that can be in the order of tens
of time steps away from the ground truth TTC. The me-
dian estimator provide better estimatesrofalthough it
slightly underestimates the initial largevalues. The me-
dian estimator is quite robust over the different approach
sequences; the light green lines do not deviate much from

the dark green line that represents the average over all ap-
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Figure 4. Time-to-contact estimates of different estima-
tors, from top to bottom: meany value (blue), median
7; value (green), and the standard deviation of the
distribution (red).
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Figure 5. Absolute errorgr — 7| over time for the differ-

proaches. Towards contact, both estimates become more €Nt estimators: mean (blue) and median (green).

accurate; indeed, the standard deviation ofithilstribu-

tion becomes smaller over time. This can be explained
by the scale differences becoming larger towards impact.
The findings on the errors of the estimators are illustrated
by Figure 5: it shows the absolute ertor— 7| over time

for both estimators.

With the same settings as mentioned above, the maxi-
mum memory size is varied @ = {1, 2, 3,4, 5}, while
estimatingr with the median, and the other settings men-
tioned above. Figure 6 shows the absolute efror 7|
averaged over all time steps and zooms, for the different

memory sizes. The largest decrease of the absolute error

takes place untiM = 4. Further analysis showed that
the cause of this finding may lie in the fact that in the

4The ground-truth can be determined on the basis of the covered
area over time.

zoom data set, features are on average only tracked over
3 images.

Reducing the image size leads to reduced estimation per-
formance. WithM = 4 and an image step size of 1,
the average absolute erfjar— 7| for the median strategy
goes fromlL.58 (512 x 512) t02.07 (256 x 256) t0 12.24

(128 x 128). Decreasing the frames per second also has
a negative effect on the performance: going from an im-
age step of 1 to an image step of 2 results in an average
absolute error of.84 (512 x 512). In a real-time sce-
nario, larger image sizes lead to the processing of fewer
frames per second. The selection of the image size there-
fore represents a trade-off between having detailed scale
measurements and having fewer such measurements per
second.
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Figure 6. Average absolute erroits — 7| for different
memory sizes for the different estimators: mean (blue)
and median (green).

4. SIMULATED LANDING EXPERIMENTS

In this section, landing experiments are performed in sim-

ulation. First, the specifics of the simulator are explained

(Subsection 4.1). Subsequently, the results of the experi-
ments are discussed (Subsection 4.2).

4.1. Experimental Setup

In this subsection, we explain the experimental setup
for the simulated landing experiments. The setup in-
volves the generation of a visual environment (Subsec-
tion 4.1.1), the physical model (Subsection 4.1.2), and the
Scale Based Landing Algorithm (SBLA) that controls the
lander (Subsection 4.1.3).

4.1.1. Visual environment

The visual environment is generated with the help of
PANGU [PMDO04], which has been designed for realis-
tically rendering space environments. PANGU can gen-
erate surfaces with different amounts of roughness, and
with different densities and characteristics of craterd an
boulders. The image rendering takes into account the po-
sition of the observer and allows the adoption of light
conditions typical for space environments.

We presume that the amount of texture is an impor-
tant factor for the results of the SBVA. In the simula-
tion experiments the texture is varied with (a) the ‘frac-
tal number’ parameterH{ € {0.3,0.5,0.7,0.9}) and
(b) the number of craters per square kilomet€r €
{0.1,0.5,0.9,1.3}). Figure 7 shows three example im-
ages, all withC' = 0.9, but with fractal numberg” =
0.3,0.5,0.9 (from left to right).

Figure 7. Three example images from the planet sur-
face generated by PANGU, with fractal numbéfs=
0.3,0.5,0.9 (from left to right).

4.1.2. Physical model

To silmulate the dynamics of our lander, we use a min-
imal set of equations able to capture the dynamical fea-
tures we need for the purpose of this paper. The equations
used are:

Uy = Uz /M

Uy = Uy/m

U, =u,/m—g
T = vy

yzvy

Z =,

(10)

iy = _ Yty tud)

- Ispgo

where the lander position is denotedhyy, z, its veloc-

ity by vy, vy, v,, its mass byn. The lander state will thus
bex = [z,y, z, v, vy, v,, m]. The thrust components are
denoted byu = [u,, u,, u.|, while I,, is the engine spe-
cific impulse (i.e. how many seconds the thrusters would
thrust at 1N consuming 1kg of fuel) amg = 9.8065.

4.1.3. State feedback control

During the descent, the lander is controlled by actuating
the thrust vecto,, u,, u.. The control law adopted for
the thrust vector is the optimal state feedback u*(x)
resulting from the solution of the following optimal con-
trol problem:

find:
to maximize:
subject to:

tf’ux(t)7uy(t)7u2(t)
m(ty)
ux(t)z + uy(t)2 +u (t)2 < Tw%m:c
Eqq.(10)
x(0) =x
Z(tf) = O,’Uz(tf) =0
v (ty) = 0,vy(tf) =0
(11)

We denote the solution to the above problemugs).
Solving it at each step we extraat (x) = u(0) which

is then used by the lander to control its descent. We use
the algorithm described in [IWSss] to obtain such a state
feedback in real time and sensor estimates to evaluate
Note that this numerical scheme is able to provide a real



time feedback accounting for optimality principles that
can actually be used as a feedback to much more com-
plicated dynamics than that that expressed in Eq.(10).
For example one could actually simulate a six degrees
of freedom lander with a more accurate thrust model, and
still use the solution to the optimal control problem above
to control the descent. The discrepancy between reality
and the model used by the lander to find a state feedback
would, in this case, result in a suboptimal trajectory with
a minimal penalty on the consumed propellant [IWSss].

The lander is assumed to use traditional sensors for es-
timating most of its state variables. In this preliminary
study, the height is assumed to be measured, for exam-
ple with a radar altimeter. The time-to-contact estimate is
used for estimating the vertical velocity, with = h/7.

The vertical velocity estimate is smoothed over the last
three time steps and used by the controller for determin-
ing the thrust.

4.2. Results

SBLA succeeds in landing successfully under all differ-
ent texture conditions. First, the results on the most tex-
tured surface § = 0.3,C = 1.3) are discussed. The
top part of Figure 8 shows the relation of the ground-
truth ‘time-to-contacth/ — v, (black dashed line) to the
estimated time-to-contadt, which is shown both non-
smoothed (red line) and smoothed (green line). The es-
timated time-to-contact corresponds well to the ground-
truth time-to-contact. The bottom part shows the re-
sulting vertical velocity estimates (red line for non-
smoothed, green line for smoothed) compared with the
ground truth velocities (black dashed line). The velocity
estimates deviate in the order of 3-5 m/s, which is suffi-
ciently accurate for a successful landing.

As expected, the results depend on the amount of texture
in view: less texture leads to less accurate time-to-contac
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Figure 8. Results forFF = 0.3,C 1.3. Top:
ground-truth time-to-contact (black, dashed line) and es-
timated time-to-contact, both non-smoothed (red line)
and smoothed (green line). Bottom: ground-truth
(black, dashed line) and estimated both non-smoothed
(red line) and smoothed (green line).

tures as circles with their radius proportional to the fea-
tures’ scales. Most of them are not located on the craters
themselves. This may be an advantageous property of
SIFT features, since landing sites are typically located on
smooth terrain.

estimates. Figure 9 shows the same results as above, buts, CONCLUSIONSAND DISCUSSION

now for F* = 0.7,C = 0.5, and Figure 10 shows the
results forF" = 0.9,C' = 0.1. Although in both cases
the landing is successful, the estimates are further away
from the ground truth than faF = 0.3,C = 1.3. Inter-
estingly, the results of’ = 0.7,C = 0.5 resemble the
results obtained in Section 3: when the lander enters high
gate, the time-to-contact is underestimated, while close
to low gate the time-to-contact is slightly overestimated.

Further analysis shows that the main parameter of influ-
ence is the fractal number. Figure 11 shows the av-
erage absolute error in the time-to-contact estimate for
all different parameter settings 6f (y-axis) andF' (x-
axis). The color scaling is included in the figure. For
F < 0.9 the average error is rather limited: (2.2), but
settingF’ = 0.9 leads to errors in the order of 7 seconds.
The number of craters only seem to be of influence when
F = 0.9. Actually, when there is quite some surface
texture other than the craters, the SIFT feature detector
prefers to track other features. Figure 12 shows SIFT fea-

From the empirical results, we may draw the conclusion
that it is feasible to use SIFT feature scales for estimating
‘time-to-contact’ ¢/ — v,) in extraterrestrial landing sce-
narios. Experiments with virtual zooms on images show
that: (1) the image size, the number of frames per sec-
ond, and the amount of memory are important factors for
the success of using feature scales for time-to-impact es-
timates, and (2) the distribution of estimates has many
outliers, necessitating robust estimators such as the me-
dian. Experiments with landing scenarios in the PANGU
simulator show that the vertical velocity estimates are ac-
curate enough for successful landing in different condi-
tions. Planetary surfaces with a more pronounced texture
lead to better results than surfaces with little texture.

There are a few important matters that should be ad-
dressed by future work in order to prove the usefulness
of the approach. First, the SIFT-algorithm is known to
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Figure 9. Results forFF = 0.7,C 0.5. Top:
ground-truth time-to-contact (black, dashed line) and es-
timated time-to-contact, both non-smoothed (red line)
and smoothed (green line). Bottom: ground-truth
(black, dashed line) and estimated both non-smoothed
(red line) and smoothed (green line).

be computationally intensive, which may seem to col-
lide with the computational restrictions on space plat-
forms. Fortunately, in recent years fast approximations

have been introduced, such as Speeded Up Robust fea-

tures (SURF) [BETGO8]. More recently, Rotation Invari-
ant Fast Features (RIFF) have been introduced, which can
be run real-time on mobile phones [T€T0]. Although

for this reason real-time computation of SIFT-like fea-
tures on space platforms does not seem to be a funda-
mental limit of the technique, the approximations come
at a cost in accuracy. In future work, the performance of
the faster approximations will have to be tested as well.

Second, as demonstrated by both the zoom-experiments
and the landing experiments, the accuracy of the time-to-

contact estimates depends on the texture around and at

the landing site. Typically, a landing site is selected for
being flat and smooth, implying that there is only a mod-
erate amount of texture. A more serious investigation into
the images of actual landing sites should provide a better
idea of the potential of using SIFT-features. On the one
hand, SIFT-features do not necessarily depend on strong

features such as craters and rocks (see Figure 11). On the

other hand, it has been argued that other types of features
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Figure 10. Results forF" = 0.9,C = 0.1. Top:

ground-truth time-to-contact (black, dashed line) and es-
timated time-to-contact, both non-smoothed (red line)
and smoothed (green line). Bottom: ground-truth
(black, dashed line) and estimated both non-smoothed
(red line) and smoothed (green line).

Third, the interest in the time-to-contact estimates aexiv
from the fact that animals use such estimates for land-
ing, without having access to sensors that measure abso-
lute height (such as a radar altimeter). Therefore, future
work should focus on using the time-to-contact directly
for control, without the need for a radar altimeter.
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[CGO09] A. Chavez and D. Gustafson. Vision-based

[IWSss] D. Izzo, N. Weiss, and T. Seidl.

[JWC+07]

[LDGW93]

[Lee67] D.N. Lee.

[Low04]

obstacle avoidance using SIFT features. In
ISVC (2)'2009 pages 550-557, 2009.

Con-
stant optic-flow lunar landing: optimality
and guidance.Journal of Guidance, Con-
trol, and Dynamicsin press.

A. Johnson, R. Willson, Y. Cheng,

J. Goguen, C. Leger, M. Sanmartin,
and L. Matthies. Design through operation
of an image-based velocity estimation sys-
tem for Mars landinglnternational Journal

of Computer Vision74(3):319-341, 2007.

D.N. Lee, M.N.O. Davies, P.R. Green, and
F.R. van der Weel. Visual control of veloc-
ity of approach by pigeons when landing.
Journal of experimental biology180:85—
104, 1993.

A theory of visual control of
braking based on information about time-to-
collision. Perception 5:437-459, 1967.

D. G. Lowe. Distinctive image features from
scale-invariant keypoints. International
Journal of Computer Visign60(2):91-110,
2004.

[MGSO08]

[MPN+09]

[MTR*09]

[OBI09]

[PMDO4]

M. Makhlouta, Y. Gao, and K. Shala. A

vision and behaviour based approach for
short-range autonomous navigation of plan-
etary rovers. IEESA Workshop on Advanced

Space Technologies for Robotics and Au-
tomation - ASTRA, Noordwijk, Netherlands

2008.

D. Muller, J. Pauli, C. Nunn, S. Gormer, and
S. Muller-Schneiders. Time to contact es-
timation using interest points. [h2th in-
ternational IEEE Conference on Intelligent
Transportation System2009.

A.l. Mourikis, N. Trawny, S.l. Roumeliotis,
A.E. Johnson, A. Ansar, and L. Matthies.
Vision-aided inertial navigation for space-
craft entry, descent, and landing.|EEE
Transactions on Robotics25(2):264—-280,
2009.

G. Orchard, C. Bartolozzi, and G. Indi-
veri. Applying neuromorphic vision sensors
to planetary landing tasks. IBiomedical
Circuits and Systems Conference, BIOCAS
2009 pages 201-204. IEEE, 2009.

S. Parkes, I. Martin, and M. Dunstan. Planet
surface simulation with pangu. IRighth
International Conference on Space Opera-
tions, pages 1-10, 2004.

[Pre87] R. Preiss. Motion parallax and figural prop-

[SMS10]

[TCT+10]

[TWO96]

[VRVS10]

erties of depth control flight speed in an in-
sect. Biological Cybernetics57(1-2):1-9,
1987.

G. Sibley, L. Matthies, and G. Sukathme.
Sliding window filter with application to
planetary landing. Journal of Field
Robotics. Special Issue: Visual Mapping
and Navigation Outdoors.27(5):587-608,
2010.

G. Takacs, V. Chandrasekhar, S. Tsali,
D. Chen, R. Grzeszczuk, and B. Girod. Uni-
fied real-time tracking and recognition with
rotation-invariant fast features. I8VPR
2010.

N. Takeda, M. Watanabe, and K. Onoguchi.
Moving obstacle detection using residual er-
ror of FOE estimation. InNROS pages
1642-1647, 1996.

F. Valette, F. Ruffier, S. Viollet, and T. Seidl.
Biomimetic optic flow sensing applied to a
lunar landing scenario. IHEEE Interna-
tional Conference on Robotics and Automa-
tion (ICRA 2010)pages 2253 — 2260, 2010.



